1、原子吸收光谱的产生
众所周知,任何元素的原子都是由原子核和绕核运动的电子组成,原子核外电子按其能量的高低分层分布而形成不同的能级,因此,一个原子核可以具有多种能级状态。能量*低的能级状态称为基态能级(E0=0),其余能级称为激发态能级,而能*低的激发态则称为**激发态。正常情况下,原子处于基态,核外电子在各自能量*低的轨道上运动。如果将一定外界能量如光能提供给该基态原子,当外界光能量E恰好等于该基态原子中基态和某一较高能级之间的能级差?E时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态,而产生原子吸收光谱。电子跃迁到较高能级以后处于激发态,但激发态电子是不稳定的,大约经过10-8秒以后,激发态电子将返回基态或其它较低能级,并将电子跃迁时所吸收的能量以光的形式释放出去,这个过程称原子发射光谱。可见原子吸收光谱过程吸收辐射能量,而原子发射光谱过程则释放辐射能量。核外电子从基态跃迁至**激发态所吸收的谱线称为共振吸收线,简称共振线。电子从**激发态返回基态时所发射的谱线称为**共振发射线。由于基态与**激发态之间的能级差*小,电子跃迁几率*大,故共振吸收线*易产生。对多数元素来讲,它是所有吸收线中*灵敏的,在原子吸收光谱分析中通常以共振线为吸收线。
2、原子吸收光谱分析原理
原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品a的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律
A= -lg I/I o= -lgT = KCL
式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。
原子吸收光谱仪的使用
电子计算机技术引入原子吸收光谱仪后,性能较好的仪器一般都由微机来控制操作,但由于仪器的型号不同,使用方法也不尽一致。现以美国ATIUNICAM公司生产的Solaar-929型原子吸收光谱仪为例,介绍原子吸收光谱仪的使用方法。
1. 打开主机,计算机进入Windows窗口,选择Solaar-929光标连续压两下,进入此页面,进入Spectmeter中的Lamp,设定所需用的灯及灯电流,进入element,选择要分析的元素。
2. 点灯,然后到Action中的Setup optics设定光路,进入System,选择要用火焰还是石墨炉。
3. 输入Calibration参数。
4. 如用石墨炉,则需要输入炉程序及自动器参数。
5. 进入Sequence输入程序。
6. 点火,优化气体流量,撞击球及火焰头位置。
7. 石墨炉则要优化炉头位置及自动进样器位置。
8. 选择Action中的Analyse进行分析。
9. 分析完毕到File中选Save存数据并打印结果。
10. 退出Windows,关机、关气、关水。