仪器仪表未来的前景
在充分发挥光电束流*高速物性的基础上,智能化日益趋向人脑化。积极地利用人脑机制与生物DNA芯片的有机智能,与电子,光子计算速度的无机智能的高效、能动优势相结合,并使材料智能化,进而与虚拟化交互作用,共同提高。当今又有光互连技术正以极高的时空带宽、极小的电磁干扰和较小的互连前景功耗等一系列独特的物理性能,克服了电互连技术物理上的本质极限,为动态、灵活、高速、实时地重构网络互连结构,大大提高并行处理能力,开创出一个全新天地。这更将为人类创造出形形**、开放的人机结合系统,和五光十色的拟人高智能、高效自动化系统奠定牢固基础,从而将人类社会生产力不断推向新的更高境界,使人类生活向着智能世界幸福美好的明天大步迈进!
模糊逻辑模仿人脑的不确定性概念判断、推理思维方式,对于模型未知或不能确定的描述系统,以及强非线性、大滞后的控制对象,应用模糊集合和模糊规则进行推理,表达过渡性界限或定性知识经验,模拟人脑方式,实行模糊综合判断,推理解决常规方法难于对付的规则型模糊信息问题。
智能科技在仪器仪表中的应用正日新月异地飞速发展,许多其他领域的新技术也不断融合进来
模糊逻辑善于表达界限不清晰的定性知识与经验,它借助于隶属度函数概念,区分模糊集合,处理模糊关系,模拟人脑实施规则型推理,解决因“排中律”的逻辑破缺产生的种种不确定问题。
遗传算法是一种以“电子束搜索”特点抑制搜索空间的计算量爆炸的搜索方法,它能以解空间的多点充分搜索,运用基因算法,反复交叉,以突变方式的*作,模拟事物内部多样性和对环境变化的高度适应性,其特点是*作性强,并能同时避免陷入局部极小点,使问题快速地全局收敛,是一类能将多个信息全局利用的自律分散系统。运用遗传算法(GA)等进化方法制成的可进化硬件(EHW),可产生超出现有模型的技术综合及设计者能力的新颖电路,特别是GA独特的全局优化性能,使其自学习、自适应、自组织、自进化能力获得更充分的发挥,为在无人空间场所进行自动综合、扩展大规模并行处理(MPP)以及实时、灵活地配置、调用基于EPGA的函数级EHW,解决多维空间中不确定性的复杂问题开通了航向。
模糊逻辑模仿人脑的不确定性概念判断、推理思维方式,对于模型未知或不能确定的描述系统,以及强非线性、大滞后的控制对象,应用模糊集合和模糊规则进行推理,表达过渡性界限或定性知识经验,模拟人脑方式,实行模糊综合判断,推理解决常规方法难于对付的规则型模糊信息问题。模糊逻辑善于表达界限不清晰的定性知识与经验,它借助于隶属度函数概念,区分模糊集合,处理模糊关系,模拟人脑实施规则型推理,解决因“排中律”的逻辑破缺产生的种种不确定问题。
遗传算法是一种以“电子束搜索”特点抑制搜索空间的计算量爆炸的搜索方法,它能以解空间的多点充分搜索,运用基因算法,反复交叉,以突变方式的*作,模拟事物内部多样性和对环境变化的高度适应性,其特点是*作性强,并能同时避免陷入局部极小点,使问题快速地全局收敛,是一类能将多个信息全局利用的自律分散系统。运用遗传算法(GA)等进化方法制成的可进化硬件(EHW),可产生超出现有模型的技术综合及设计者能力的新颖电路,特别是GA独特的全局优化性能,使其自学习、自适应、自组织、自进化能力获得更充分的发挥,为在无人空间场所进行自动综合、扩展大规模并行处理(MPP)以及实时、灵活地配置、调用基于EPGA的函数级EHW,解决多维空间中不确定性的复杂问题开通了航向。
专家系统是收集应用人类专家的知识和经验,模仿专家处理知识和解决问题的方法,编制成计算机智能软件系统,在通过人机结合不断获得反馈信息的情况下,实时在线地对规则、事例和模型实行独立决策的一种问题求解或控制系统。这种计算机智能系统具有启发性、透明性和灵活性,在不受时间、空间和环境影响情况下,高效率、准确无误、周密**、迅速不疲倦地完成工作,其解决问题能力和知识的广博性可超过人类专家,又克服了人类专家因疏忽、遗忘、紧张、疲倦等干扰因素造成的偏差和错误,因而其推广、应用具有巨大的经济和社会效益。
模式识别是模拟人脑形象思维,根据事物的特征、形象或关系,辨识、判定
粗糙集理论则是在离散归一化处理其在测量中所得的数据集合,通过基于集合元素的不可分辨关系的代数运算,利用条件与结果属性中的大量有用特征、有效数据发现知识,在决策规则的初步简化计算中取得核值,然后进一步简化规则并根据问题要求选取*小决策算法给予实际应用,去除大量信息中的多余属性,降低信息空间的维数和属性数量。
它可大大简化网络结构和样本数量,缩短训练时间,是智能科技中一种具有根本意义的分析方法。这种方法是基于测量数据集而获取知识的,故对虚拟仪器的智能化发展具有重大意义。
混沌运动是确定性系统中局限于有限相空间的高度不稳定运动,是无序中的有序,它使事物在长时间的行为中显示出表面上的某种混乱。混沌现象的特征是“非周期背后隐藏的有序性”以及“对初始条件的敏感依赖性”,充分利用混沌特征,在智能信息处理中实施非线性决策和预测、非线性系统辨识、模式识别、图像数据压缩、高性能保密、多目标搜索,以及无限丰富、精彩绝伦的计算机绘画等种种神奇应用。
分形理论研究非线性系统产生的不光滑和不可微的几何形体及其内在结构的比例自相似性,为研究掌握自然界一切复杂事物的运动变化规律提供了强有力的工具和方法。