BASICS: FOURIER TRANSFORM SPECTROMETRY

分享到:
点击量: 216777 来源: 北京锦坤科技有限公司
北京锦坤科技有限公司 www.jon-kon.com

The  ARCspectro-NIR  (MIR)  and  ARCspectro-HT  manufactured  by  ARCoptix  are  Fourier  transform
spectrometers (FTS). Although this type of device is used for the same scope as more conventional grating
spectrometers - i.e.  analyzing the  spectrum  of  light - FTS  operates in  a  different  manner. This document
describes their basic working principle in a concise and didactical manner.
HOW DOES IT WORK?
A FT spectrometer is an interferometer. Its historical and most widely known configuration is the Michelson
interferometer, shown on Fig. 1. A beam-splitter is used for dividing the light to be spectrally analyzed into
two beams.  After they have been reflected on two distinct mirrors, the two beams are recombined by the
same beam-splitter and sent to a detector. One of the mirrors is fixed, while the other is a movable mirror.
When  the  fixed  and  the  movable  mirrors  are  equidistant  from  the  beam  splitter  (d=0)  both  beams  travel
the same distance before reaching the detector.  However, if the movable mirror moved away, one of the
light beams has to travel an additional distance δ = 2d (back and forth) called retardation, or optical path
difference.


MONOCHROMATIC LIGHT - INTERFERENCE
Let  us  first  consider a perfectly monochromatic light  source. At  the  detector,  the  recombined beams will
produce interference,  which  can  be  constructive&nbs*******bsp; destructive.  If δ=0  (i.e.  if  the  two  mirrors  are
equidistant  from  the  beamsplitter)&nbs*******bsp; if δ  is  an  integer  multiple  of  the  wavelengthλ  (δ=nλ,  with n
integer) then the  two  beams  are  said  to  be in  phase are  and constructive interference is  produced:  the
intensity at the detector is equal to the intensity of the source. 
On the opposite, if δ=λ /2 or if 𝛿 is equal to δ=λ /2 plus an integer multiple of the wavelength λ (i.e. if
δ=(n+1)λ /2)
 
then  the  two  beams  are  said  to  be  in out  of  phase are  and destructive interference  is
produced: the intensity at the detector is zero.
For  intermediate retardations δ,  a  smooth  behaviour  takes  place. By  scanning  the movable  mirror over
some distance, the intensity I(δ) recorded on the detector is a sinusoidal function:

Where  I0 is the intensity of the source. Graphically, it looks like this:


The intensity I(δ) measured as a function of the retardation δ is called the interferogram. It is important to
understand  that  the  period  in  the  recorded  interferogram  depends  on  the  light  wavelength:  the  longer is
the wavelength, the larger is the period in the interferogram.

BI-CHROMATIC LIGHT
Let  us  consider  a  slightly  more  complicated  situation  where  the  light source  emits  at  two  discrete
wavelengths, which is illustrated on Fig. 3. The left graph schematically illustrates the spectra of such a bi-chromatic  light.  We  have  assumed  that  the  shorter  wavelength  (blue)  is  less  intense  than  the  longer
wavelength (red).

            
                   Fig. 3 – Schematic representation of an interferogram produced by bi-chromatic light 

The right-hand graph in Fig. 3 shows three interferograms. The upper interferogram is the one produced by
the spectral line with shorter wavelength and weaker intensity (upper blue). It has a short period and small
amplitude.  The  interferogram  produced  by  the  spectral  line  with  longer  wavelength  and  higher  intensity
(middle  red)  has  a  longer  period  and  larger  amplitude.  Due to  the  linearity  of  the  process,  the
interferogram  that  is  effectively  recorded  by  the  photo-detector  is  simply  the  sum  of  the  two  other
interferograms (lower black curve).

In the example above, the two original wavelengths can still be distinguished quite clearly in the composed
interferogram.  However,  in  more  complex  circumstances,  it  is  usually  not so  evident.  A  mathematical
operation  is needed  for  identifying  the  spectral intensity  of  the  source  starting  from  the  measured
interferogram - called Fourier transform - which will be discussed further.

POLYCHROMATIC LIGHT 
When  the  light  source is  characterized  by  a wide-band spectrum things  are  not so much  different. For
example,  consider  the  spectrum  shown  in  Fig.4.  Each  spectral  component of  the  light  source can  be
thought of producing an interferogram with its characteristic period, and whose amplitude is weighted by
the relative spectral intensity.

Again, the interferogram recorded by the detector is simply the sum of all these weighted monochromatic
interferograms (red  line). Note  that  all  wavelengths  are  simultaneously  interfering  constructively at  the
zero  retardation  point  (δ=0).  This  causes  a strong intensity  peak  in  the  compound interferogram,
commonly called centerburst, which is typical of interferograms recorded with wide-band spectra. At larger
retardations,  the  modulation  in  the interferogram  progressively  dies-out.  Indeed,  the  maxima of  the
monochromatic interferograms are progressively going out of phase, thus they are cancelling each other.

FOURIER TRANSFORM
Mathematically speaking, the sum of the monochromatic interferograms simply turns into an integral (i.e.
not a discrete but a continuous summation). The recorded interferogram can by calculated by:


where S(υ) is  the  spectrum  of  the  light  source expressed  in wave-numbers υ/𝜆 (the  inverse  of  the
wavelength, the so-called wave-number or spatial frequency). Do not bother too much on the fact that the
spectrum  is  expressed  in  terms  of  wave-numbers  instead  of  wavelengths.  The  only  reason  is  that  the
integral,  called (cosine) Fourier  transform,  has  a slightly  simpler  mathematical  form  when  expressed  in
wave-numbers.

Getting the spectra from the interferogram
Usually, one  is  interested  in the  spectrum of  the  light source producing  the interferogram. The  Fourier
transform has the useful property of having an inverse, that allows calculating back the spectrum S(u) from
the interferogram I(δ). The inverse cosine Fourier transform is very simply expressed by:

In conclusion, the essential idea to remember is that there is a 1-to-1 correspondence between spectra and
interferogram. Each particular light spectrum is related to a unique interferogram, and each interferogram
corresponds  to  a unique  spectrum.  The  mathematical  relationship  between  the  two  is  the  Fourier
transform.


北京锦坤科技有限公司

www.jon-kon.com
电话:010-62530053,52494037
邮箱:jon_kon@163.com
地址:北京市海淀区农大南路1号硅谷亮城B座210室