湿度传感器原理、应用、参数及选型

分享到:
点击量: 190032 来源: 厦门安东电子有限公司
  人类的生存和社会活动与湿度密切相关。随着现代化的实现,很难找出一个与湿度无关的领域来。由于应用领域不同,对湿度传感器的技术要求也不同。从制造角度看,同是湿度传感器,材料、结构不同,工艺不同.其性能和技术指标有很大差异,因而价格也相差甚远。对使用者来说,选择湿度传感器时,首先要搞清楚需要什么样的传感器;自己的财力允许选购什么档次的产品,权衡好“需要与可能”的关系,不致于盲目行事。我们从与用户的来往中,觉得有以下几个问题值得注意。
  
  1.选择测量范围
  
  和测量重量、温度一样,选择湿度传感器首先要确定测量范围。除了气象、科研部门外,搞温、湿度测控的一般不需要全湿程(0-100%RH)测量。在当今的信息时代,传感器技术与计算机技术、自动控制拄术紧密结合着。测量的目的在于控制,测量范围与控制范围合称使用范围。当然,对不需要搞测控系统的应用者来说,直接选择通用型湿度仪就可以了。下面列举一些应用领域对湿度传感器使用温度、湿度的不同要求,供使用者参考(见表1)。用户根据需要向传感器生产厂提出测量范围,生产厂优先保证用户在使用范围内传感器的性能稳定一致,求得合理的性能价格比,对双方来讲是一件相得益彰的事情。
  
  2、选择测量精度
  
  和测量范围一样,测量精度同是传感器*重要的指标。每提高—个百分点.对传感器来说就是上一个台阶,甚至是上一个档次。因为要达到不同的精度,其制造成本相差很大,售价也相差甚远。例如进口的1只廉价的湿度传感器只有几美元,而1只供标定用的全湿程湿度传感器要几百美元,相差近百倍。所以使用者一定要量体裁衣,不宜盲目追求“高、精、尖”。
  
  生产厂商往往是分段给出其湿度传感器的精度的。如中、低温段(0一80%RH)为±2%RH,而高湿段(80—100%RH)为±4%RH。而且此精度是在某一指定温度下(如25℃)的值。如在不同温度下使用湿度传感器.其示值还要考虑温度漂移的影响。众所周知,相对湿度是温度的函数,温度严重地影响着指定空间内的相对湿度。温度每变化0.1℃。将产生0.5%RH的湿度变化(误差)。使用场合如果难以做到恒温,则提出过高的测湿精度是不合适的。因为湿度随着温度的变化也漂忽不定的话,奢谈测湿精度将失去实际意义。所以控湿首先要控好温,这就是大量应用的往往是温湿度—体化传感器而不单纯是湿度传感器的缘故。
  
  多数情况下,如果没有**的控温手段,或者被测空间是非密封的,±5%RH的精度就足够了。对于要求**控制恒温、恒湿的局部空间,或者需要随时跟踪记录湿度变化的场合,再选用±3%RH以上精度的湿度传感器。与此相对应的温度传感器.其测温精度须足±0.3℃以上,起码是±0.5℃的。而精度高于±2%RH的要求恐怕连校准传感器的标准湿度发生器也难以做到,更何况传感器自身了。国家标准物质研究中心湿度室的文章认为:“相对湿度测量仪表,即使在20—25℃下,要达到2%RH的准确度仍是很困难的。”
  
  3、考虑时漂和温漂
  
  几乎所有的传感器都存在时漂和温漂。由于湿度传感器必须和大气中的水汽相接触,所以不能密封。这就决定了它的稳定性和寿命是有限的。一般情况下,生产厂商会标明1次标定的有效使用时间为1年或2年,到期负责重新标定。请使用者在选择传感器时考虑好日后重新标定的渠道,不要贪图便宜或迷信洋货而忽略了售后服务问属。
  
  温漂在上1节已经提到。选择湿度传感器要考虑应用场合的温度变化范围,看所选传感器在指定温度下能否正常工作,温漂是否超出设计指标。要提醒使用者注意的是:电容式湿度传感器的温度系数α是个变量,它随使用温度、湿度范围而异。这是因为水和高分子聚合物的介电系数随温度的改变是不同步的,而温度系数α又主要取决于水和感湿材料的介电系数,所以电容式湿敏元件的温度系数并非常数。电容式湿度传感器在常温、中湿段的温度系数*小,5-25℃时,中低湿段的温漂可忽略不计。但在高温高湿区或负温高湿区使用时,就一定要考虑温漂的影响,进行必要的补偿或订正。
  
  领域部门温度(℃)温度(%RH)
  
  纺织纺纱厂2360
  
  织布厂1885
  
  医药制药厂10~3050~60
  
  手术室23~2650~60
  
  轻工印刷厂23~2749~51
  
  **厂21~2455~65
  
  火柴厂18~2250
  
  电子半导体2230~45
  
  计算机房20~3040~70
  
  通讯电缆充气-10~300~20
  
  食品啤酒发酵4~850~70
  
  农业良种培育15~4040~75
  
  人工大棚5~4040~100
  
  仓储水果冷冻-3~580~90
  
  地下菜窖-3~-170~80
  
  文物保管16~1850~55
  
  注:在不同领域的使用范围(%RH/℃)
  
  4.与传统测湿方法的关系
  
  早在18世纪人类就发明了干湿球和毛发湿度计,而电子式湿度传感器是近几十年.特别是近20年才迅速发展起来的。新旧事物的交替与人们的观念转变很有关系。由于干湿球、毛发湿度计的价格仍明显低于湿度传感器,造成一部分人对电子湿度传感器价格的不认可。正好像用惯了扫帚的人改用吸尘器时,总觉得花几百元钱买一台吸尘器有些不上算,不如花几元钱买把扫帚那样心理容易平衡。
  
  由于传统测湿方法在人们的脑海中印象太深了,一些人形成了只有干湿球湿度计才是准确的固有概念。有些用户拿干湿球湿度计来对比刚购得的湿度传感器,如发现示值不同,马上认为湿度传感器不准。须知干湿球的准确度只有5%一7%RH,不但低于电子湿度传感器,而且还取决于干球、湿球两支温度计本身的精度;湿度计必须处于通风状态:只有纱布水套、水质、风速都满足一定要求时,才能达到规定的准确度。湿度传感器生产厂在产品出厂前都要采用标准湿度发生器来逐支标定,*常用分流式标准湿度发生器来进行标定。所以希望用户在需要校准时也采用相同的方法,避免用准确度低的器具去校准或比对精度高的传感器。
  
  5、其它注意事项
  
  湿度传感器是非密封性的,为保护测量的准确度和稳定性,应尽量避免在酸性、碱性及含有机溶剂的气氛中使用。也避免在粉尘较大的环境中使用。为正确反映欲测空间的湿度,还应避免将传感器安放在离墙壁太近或空气不流通的死角处。如果被测的房间太大,就应放置多个传感器。
  
  有的湿度传感器对供电电源要求比较高,否则将影响测量精度.或者传感器之间相互干扰,甚至无法工作。使用时应技要求提供合适的、符合精度要求的供电电源。
  
  传感器需要进行远距离信号传输时,要注意信号的衰减问题。当传输距离超过200m以上时,建议选用频率输出信号的湿度传感器。
  
  由于湿敏元件都存在一定的分散性,无论进口或国产的传感器都需逐支调试标定。大多数在更换湿敏元件后需要重新调试标定,对于测量精度比较高的湿度传感器尤其重要。
  
  湿度传感器的发展趋势
  
  介绍湿敏元件的特性,重点阐述集成湿度传感器、单片智能化湿度/温度传感器的性能特点及产品分类,*后给出集成湿度传感器典型产品的技术指标。
  
  在工农业生产、气象、环保、国防、科研、航天等部门,经常需要对环境湿度进行测量及控制。但在常规的环境参数中,湿度是*难准确测量的一个参数。用干湿球湿度计或毛发湿度计来测量湿度的方法,早已无法满足现代科技发展的需要。这是因为测量湿度要比测量温度复杂的多,温度是个独立的被测量,而湿度却受其他因素(大气压强、温度)的影响。此外,湿度的标准也是一个难题。国外生产的湿度标定设备价格十分昂贵。
  
  近年来,国内外在湿度传感器研发领域取得了长足进步。湿敏传感器正从简单的湿敏元件向集成化、智能化、多参数检测的方向迅速发展,为开发新一代湿度/温度测控系统创造了有利条件,也将湿度测量技术提高到新的水平。
  
  1湿敏元件的特性
  
  湿敏元件是*简单的湿度传感器。湿敏元件主要电阻式、电容式两大类。
  
  1.1湿敏电阻
  
  湿敏电阻的特点是在基片上覆盖一层用感湿材料制成的膜,当空气中的水蒸气吸附在感湿膜上时,元件的电阻率和电阻值都发生变化,利用这一特性即可测量湿度。湿敏电阻的种类很多,例如金属氧化特湿敏电阻、硅湿敏电阻、陶瓷湿敏电阻等。湿敏电阻的优点是灵敏度高,主要缺点是线性度和产品的互换性差。
  
  1.2湿敏电容
  
  湿敏电容一般是用高分子薄膜电容制成的,常用的高分子材料有聚苯乙烯、聚酰亚胺、酷酸醋酸纤维等。当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。湿敏电容的主要优点是灵敏度高、产品互换性好、响应速度快、湿度的滞后量小、便于制造、容易实现小型化和集成化,其精度一般比湿敏电阻要低一些。国外生产湿敏电容的主厂家有Humirel公司、Philips公司、Siemens公司等。以Humirel公司生产的SH1100型湿敏电容为例,其测量范围是(1%~99%)RH,在55%RH时的电容量为180pF(典型值)。当相对湿度从0变化到100%时,电容量的变化范围是163pF~202pF。温度系数为0.04pF/℃,湿度滞后量为±1.5%,响应时间为5s。
  
  除电阻式、电容式湿敏元件之外,还有电解质离子型湿敏元件、重量型湿敏元件(利用感湿膜重量的变化来改变振荡频率)、光强型湿敏元件、声表面波湿敏元件等。湿敏元件的线性度及抗污染性差,在检测环境湿度时,湿敏元件要长期暴露在待测环境中,很容易被污染而影响其测量精度及长期稳定性。
  
  2集成湿度传感器的性能特点及产品分类
  
  目前,国外生产集成湿度传感器的主要厂家及典型产品分别为Honeywell公司(HIH-3602、HIH-3605、HIH-3610型),Humirel公司(HM1500、HM1520、HF3223、HTF3223型),Sensiron公司(SHT11、SHT15型)。这些产品可分成以下三种类型:
  
  2.1线性电压输出式集成湿度传感器
  
  典型产品有HIH3605/3610、HM1500/1520。其主要特点是采用恒压供电,内置放大电路,能输出与相对湿度呈比例关系的伏特级电压信号,响应速度快,重复性好,抗污染能力强。
  
  2.2线性频率输出集成湿度传感器
  
  典型产品为HF3223型。它采用模块式结构,属于频率输出式集成湿度传感器,在55%RH时的输出频率为8750Hz(型值),当上对湿度从10%变化到95%时,输出频率就从9560Hz减小到8030Hz。这种传感器具有线性度好、抗干扰能力强、便于配数字电路或单片机、价格低等优点。
  
  2.3频率/温度输出式集成湿度传感器
  
  典型产品为HTF3223型。它除具有HF3223的功能以外,还增加了温度信号输出端,利用负温度系数(NTC)热敏电阻作为温度传感器。当环境温度变化时,其电阻值也相应改变并且从NTC端引出,配上二次仪表即可测量出温度值。
  
  3单片智能化温度/温度传感器
  
  2002年Sensiron公司在世界上率先研制成功SHT11、SHT15型智能化温度/温度传感器,其外形尺寸仅为7.6(mm)×5(mm)×2.5(mm),体积与火柴头相近。出厂前,每只传感器都在温度室中做过精密标准,标准系数被编成相应的程序存入校准存储器中,在测量过程中可对相对湿度进行自动校准。它们不仅能准确测量相对温度,还能测量温度和露点。测量相对温度的范围是0~100%,分辨力达0.03%RH,*高精度为±2%RH。测量温度的范围是-40℃~+123.8℃,分辨力为0.01℃。测量露点的精度<±1℃。在测量湿度、温度时A/D转换器的位数分别可达12位、14位。利用降低分辨力的方法可以提高测量速率,减小芯片的功耗。SHT11/15的产品互换性好,响应速度快,抗干扰能力强,不需要外部元件,适配各种单片机,可广泛用于医疗设备及温度/湿度调节系统中。
  
  芯片内部包含相对湿度传感器、温度传感器、放大器、14位A/D转换器、校准存储器(E2PROM)、易失存储器(RAM)是、状态寄存器、循环冗余校验码(CRC)寄存器、二线串行接口、控制单元、加热器及低电压检测电路。其测量原理是首先利用两只传感器分别产生相对湿度、温度的信号,然后经过放大,分别送至A/D转换器进行模/数转换、校准和纠错,*后通过二线串行接口将相对湿度及温度的数据送至μC。鉴于SHT11/15输出的相对湿度读数值与被测相对湿度呈非线性关系,为获得相对湿度的准确数据,必须利用μC对读数值进行非线性补偿。此外当环境温度TA≠+25℃时,还需要对相对湿度传感器进行温度补偿。
  
  芯片内部有一个加热器。将状态寄存器的第2位置“1”时该加���器接通电源,可使传感器的温度大约升高5℃,电源电流亦增加8mA(采用+5V电源)。使用加热器可实现以下三种功能:①通过比较加热前后测出的相对湿度值及温度值,可确定传感器是否正常工作;②在潮湿环境下使用加热器,可避免传感器凝露;③测量露点时也需要使用加热器。
  
  露点也是湿度测量中的一个重要参数,它表示在水汽冷却过程中*初发生结露的温度。为了计算露点,Sensirion公司还向用户提供一个测量露点的程序“SHTxdp.bsx”。利用该程序可以控制内部加热器的通、断,再根据所测得的温度值及相对湿度值计算出露点。在命令响应界面上运行此程序时,计算机屏幕上就显示提示符“>”。用户首先从键盘上输入字母“S”,然后输入相应的数字,即可获得下述结果:
  
  输入数字“1”时,测量并显示出摄氏温度dgC=xx.x;
  
  输入数字“2”时,测量并显示出相对湿度%RH=xx.x;
  
  输入数字“3”时,打开加热器,使传感器温度升高5℃;
  
  输入数字“4”时,关闭加热器,使传感器降温;
  
  输入数字“5”时,显示露点温度dpC=xx.x。
  
  4集成湿度传感器典型产品的技术指标
  
  集成湿度传感器的测量范围一般可达到0~100%。但有的厂家为保证精度指标而将测量范围限制为10%~95%。设计+3.3V低压供电的湿度/温度测试系统时,可选用SHT11、SHT15传感器。这种传感器在测量阶段的工作电流为550μA,平均工作电流为28μA(12位)或2μA(8位)。上电时默认为休眠模式(SleepMode),电源电流仅为0.3μA(典型值)。测量完毕只要没有新的命令,就自动返回休眠模式,能使芯片功耗降至*低。此外,它们还具有低电压检测功能。当电源电压低于+2.45V±0.1V时,状态寄存器的第6位立即更新,使芯片不工作,从而起到了保护作用。
  
  有关湿度传感器国家标准目录
  
  GB-T15768-1995电容式湿敏元件与湿度传感器总规范
  
  GBT11605-2005湿度测量方法
  
  JJF1012-1987常用湿度计量名词术语
  
  JJF1076-2001湿度传感器校准规范
  
  JJF1101-2003环境试验设备温度湿度校准规范
  
  JJG205-2005机械式温湿度计检定规程
  
  JJG499-2004精密露点仪检定规程
  
  JJG500-2005电解法湿度仪检定规程
  
  JJG826-1993二级标准分流式湿度发生器
  
  JJG899-1995石油低含水率分析仪检定方法