PM2.5、单片机、粉尘浓度、DSM501、自动检测
图1 粉尘浓度监测系统基本框图
3、粉尘浓度显示的实现思路
以往的显示模块多采用数码管,虽然数码管显示的亮度高,成本低,电路简单,但是数码管一般只适合数字显示,占用的I/O多。而本系统设计采用的LCD12864,虽然相对来说程序和电路都复杂些,但是液晶显示信息量大,具有功耗低、体积小、重量轻、超薄等许多其他显示器无法比拟的优点,近年来已被广泛应用于单片机控制的智能仪器、仪表和低功耗电子产品中。
四、设计内容的实现
1、微处理器单片机的组成
单片机的*小系统就是让单片机能正常工作并发挥其功能时所必须的组成部分,也可理解为是用*少的元件组成的单片机可以工作的系统。对51 系列单片机来说, *小系统一般应该包括: 单片机、时钟电路、复位电路、输入/ 输出设备等(见图3)。
1. 时钟电路
在设计时钟电路之前,让我们先了解下51 单片机上的时钟管脚:
XTAL1(19 脚) :芯片内部振荡电��输入端。
XTAL2(18 脚) :芯片内部振荡电路输出端。
XTAL1 和XTAL2 是独立的输入和输出反相放大器,它们可以被配置为使用石英晶振的片内振荡器,或者是器件直接由外部时钟驱动。图3中采用的是内时钟模式,即采用利用芯片内部的振荡电路,在XTAL1、XTAL2 的引脚上外接定时元件(一个石英晶体和两个电容),内部振荡器便能产生自激振荡。一般来说晶振可以在1.2 ~ 12MHz 之间任选,甚至可以达到24MHz 或者更高,但是频率越高功耗也就越大。在本实验套件中采用的11.0592M 的石英晶振。和晶振并联的两个电容的大小对振荡频率有微小影响,可以起到频率微调作用。当采用石英晶振时,电容可以在20 ~ 40pF 之间选择(本实验套件使用30pF);当采用陶瓷谐振器件时,电容要适当地增大一些,在30 ~ 50pF 之间。通常选取33pF 的陶瓷电容就可以了。
另外值得一提的是如果读者自己在设计单片机系统的印刷电路板(PCB) 时,晶体和电容应尽可能与单片机芯片靠近,以减少引线的寄生电容,保证振荡器可靠工作。检测晶振是否起振的方法可以用示波器可以观察到XTAL2 输出的十分漂亮的正弦波,也可以使用万用表测量( 把挡位打到直流挡,这个时候测得的是有效值)XTAL2 和地之间的电压时,可以看到2V 左右一点的电压。
时钟电路如图3所示。
2. 复位电路
在单片机系统中,复位电路是非常关键的,当程序跑飞(运行不正常)或死机(停止运行)时,就需要进行复位。
MCS-5l 系列单片机的复位引脚RST( 第9 管脚) 出现2个机器周期以上的高电平时,单片机就执行复位操作。如果RST 持续为高电平,单片机就处于循环复位状态。
复位操作通常有两种基本形式:上电自动复位和开关复位 。上电瞬间 ,电容两端电压不能突变 ,此时电容的负极和 RESET 相连,电压全部加在了电阻上,RESET 的输入为高,芯片被复位。随之+5V电源给电容充电,电阻上的电压逐渐减小,*后约等于0 ,芯片正常工作。并联在电容的两端为复位按键,当复位按键没有被按下的时候电路实现上电复位,在芯片正常工作后 ,通过按下按键使RST管脚
出现高电平达到手动复位的效果。
复位电路图如图4所示。
3. EA/VPP(31 脚) 的功能和接法
51 单片机的EA/VPP(31 脚) 是内部和外部程序存储器的选择管脚。当EA 保持高电平时,单片机访问内部程序存储器;当EA 保持低电平时,则不管是否有内部程序存储器,只访问外部存储器。
对于现今的绝大部分单片机来说,其内部的程序存储器(一般为flash)容量都很大,因此基本上不需要外接程序存储器,而是直接使用内部的存储器。
在本实验套件中,EA 管脚接到了VCC 上,只使用内部的程序存储器。这一点一定要注意,很多初学者常常将EA 管脚悬空,从而导致程序执行不正常。
4. P0 口外接上拉电阻
51 单片机的P0 端口为开漏输出,内部无上拉电阻(见图3)。所以在当做普通I/O 输出数据时,由于V2 截止,输出级是漏极开路电路,
要使“1”信号(即高电平)正常输出,必须外接上拉电阻,如图5所示。
另外,避免输入时读取数据出错,也需外接上拉电阻。在这里简要的说下其原因:在输入状态下,从锁存器和从引脚上读来的信号一般是一致的,但也有例外。例如,当从内部总线输出低电平后,锁存器Q = 0, Q = 1,场效应管V1 开通,端口线呈低电平状态。此时无论端口线上外接的信号是低电平还是高电平,从引脚读入单片机的信号都是低电平,因而不能正确地读入端口引脚上的信号。又如,当从内部总线输出高电平后,锁存器Q = 1, Q = 0,场效应管V1 截止。如外接引脚信号为低电平, 从引脚上读入的信号就与从锁存器读入的信号不同。所以当P0 口作为通用I/O 接口输入使用时,在输入数据前,应先向P0 口写“1”,此时锁存器的Q 端为“0”,使输出级的两个场效应管V1、V2 均截止,引脚处于悬浮状态,才可作高阻输入。
总结来说:为了能使P0 口在输出时能驱动NMOS 电路和避免输入时读取数据出错,需外接上拉电阻。在本实验套件中采用的是外加一个10K 排阻。此外,51 单片机在对端口P0—P3 的输入操作上,为避免读错,应先向电路中的锁存器写入“1”,使场效应管截止,以避免锁存器为“0”状态时对引脚读入的干扰。
5. LED 驱动电路
细心的读者可能已经发现,在*小系统中,发光二极管(LED)的接法是采取了电源接到二极管正极再经过1K 电阻接到单片机I/O 口上的(见图4 中的接法1)。为什么这么接呢?首先我们要知道LED 的发光工作条件,不同的LED 其额定电压和额定电流不同,一般而言,红或绿颜色的LED 的工作电压为1.7V~2.4V,蓝或白颜色的LED 工作电压为2.7~4.2V, 直径为3mm LED 的工作电流2mA~10mA。在这里采用红色的3mm 的LED。其次,51 单片机(如本实验板中所使用的STC89C52单片机)的I/O 口作为输出口时,拉电流(向外输出电流)的能力是μA 级别,是不足以点亮一个发光二极管的。而灌电流(往内输入电流)的方式可高达20mA,故采用灌电流的方式驱动发光二极管。当然,现今的一些增强型单片机,是采用拉电流输出(接法2)的,只要单片机的输出电流能力足够强即可。另外,图4 中的电阻为1K 阻值,是为了限制电流,让发光二极管的工作电流限定在2mA~10mA。
2、粉尘浓度监测采集电路的实现
本设计测量空气中粉尘浓度采用灰尘传感器DSM501
灰尘传感器DSM501主要特性:
●灰尘传感器DSM501可以感知**产生的烟气和花粉,房屋粉尘等
●1微米以上的微小粒子.
●体积小,重量轻,便于安装.
●5V的输入电路,便于信号处理.
●内藏气流发生器,可以自行吸引外部大气.
●灰尘传感器DSM501保养简单,可以长期保持传感器的特性.
1、 加热器:模块内置一个加热器,热引起上升气流使外部空气流进模块内部。
2、 检测的粒子类型:此模块被设计成可以检测1μm 以上粒子,如香烟、房屋灰尘、霉菌、
花粉、孢子。
3、 安装: ①必须���直安装;
②远离人工气流如风扇,如当用于空气清新机时,风扇的前方和后方都不能安装,
可任选外壳一侧安装,但外壳上要保留通风口以保证外部气流可以流进来;
③注意安装时要避免粘性粒子如油类进入模块,当这种粒子粘在光学部件上将会
产生故障。
④当模块受潮湿将会影响它的正常功能,因此应避免受潮。
4、 透镜:透镜需要视环境状况隔一段时间进行清洁,约6 个月一次。清洁时用棉签一头醮清
水轻擦,然后用另一头擦干。不可以用酒精等有机溶剂擦拭透镜。
5、 版权说明:本产品及资料版权归SYHITECH
所做编译只是为了促进该产品在中国地区的销售及应用,资料如有不符请以原厂为准。
■ 包装
模块尺寸:59*45*20 (mm)
重量:约25g
托 盘: 5*5= 25pcs/盘
中 盒:5 盘=125pcs/盒
外包装:4 盒=500pcs/包
尺寸:670*250*420(mm)
重量:不超过13Kg
符号 尺寸(mm)
L 59
W 45
H 20
L
W
H
如图4所示。
3、LCD12864显示功能的实现
基于本设计所显示内容信息量大,本设计选择以液晶显示信息量大,具有功耗低、体积小、重量轻、超薄等功能的LCD12864液晶显示屏作为实现显示功能的元件。
FYD12864-0402B是一种具有4位/8位并行、2线或3线串行多种接口方式,内部含有国标**、二级简体中文字库的点阵图形液晶显示模块;其显示分辨率为128×64, 内置8192个16*16点汉字,和128个16*8点ASCII字符集.利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面。可以显示8×4行16×16点阵的汉字. 也可完成图形显示.
LCD12864管脚图如图5所示。
电路接线图如图6所示。
图6 LCD12864电路接线图
4、蜂鸣器报警功能的实现
将温湿度传感器采集出来的监测值传输给单片机,当单片机比较监测到的数值超出所设定阈值时,驱动风扇,若风扇降温的效果低于温度升高的速度,当温度超过所设置温度*大限度值,蜂鸣器便开始工作报警,直到温度达到**温度范围内,停止鸣叫报警。
同理,当湿度达到所设置湿度*高限度值时蜂鸣器也开始工作报警,直到湿度达到正常湿度范围内,停止鸣叫报警。
蜂鸣器报警电路如图7所示。
温湿度调节主要分为升温模块,降温模块,干燥模块和加湿模块。系统温湿度调节的实现通过单片机控制电暖器升温,控制风扇降温,控制加湿器加湿空气。
本设计主要实现风扇降温功能。
降温模块主要元件由小马达组成,用塑料片剪成扇叶形状装在小马达上,当温湿度传感器所测当前温度高于所设定限度值,系统自动启动小马达起到降温的作用,直到温度恢复到正常值范围内,系统自动停止马达的转动从而起到调节温度制冷作用。
风扇降温电路如图8所示。