在技术更新方面,储能是综合能源服务、源网荷高效深度融合、新一代电力系统等的关键技术,建议重点以储能技术为突破口带动能源电力产业转型升级。我国已经建成全球*大的清洁煤电体系,下一步,建议重点实践推广碳捕捉与封存等低碳化技术,推动煤电行业进一步转型升级发展。为满足新能源发展、综合能源基地开发汇集及远距离电力输送需要,建议着力推广应用多端、柔性直流输电技术,推动我国输电技术水平进一步提升。
新时代,我国电力工业发展的主要矛盾从过去的“国民经济快速发展和人民群众生活水平日益提高所必需的用电需要与落后的电力生产之间的矛盾”,历史性地转变为“人民日益增长美好生活所需的多元化用电需要和电力工业不平衡不充分发展的矛盾”,而推动电力工业高质量发展正是解决这一矛盾的方向与主线。
系统介绍(WBPCD-4000在线局放分析仪设计精巧,结构简单)
WBPCD-4000局部放电检测仪可配合使用特高频传感器、TEV传感器、声电组合传感器、超声传感器和宽频带电流互感器(HFCT)在线检测变压器、高压开关柜、GIS、电缆接头等高压设备的局部放电情况。携带方便、测量快速,抗干扰能力强,便于现场使用。
其配置软件具有实时波形图、*大峰值显示、定位等功能,软件也可以详查分析某个相位波形,窗口随意放大和缩小,也可以对该段数据进行频谱分析,分析放电波形的频谱含量,使放电波形之间更具可比性,全方位统计分析试验数据,减少试验中非稳定性因素对试验结果的影响。
WBPCD-4000在线局放分析仪设计精巧,结构简单采用自动或手动记录保存试验数据和瞬态放电波形,提供后期数据分析参考。
技术参数(WBPCD-4000在线局放分析仪设计精巧,结构简单)
技术特性
|
|
通道数
|
2/4个电信号接口,1个外同步接口
|
采样率
|
*大200MSa/s
|
采样精度
|
12bit
|
量程范围
|
100dB
|
量程切换
|
0-9共10档
|
频带范围
|
1Hz-60MHz
|
本量程非线性误差
|
5%
|
检测灵敏度
|
≥5pC(实验室条件下);≥10pC(现场条件下)
|
图谱显示方式
|
二维PPRS显示、三维PRPD显示、正弦显示、统计、频谱(AE)5种显示
|
电源模式
|
内置锂电池/AC 220V
|
显示
|
|
显示屏
|
6.5寸 TFT真彩色触摸液晶显示屏
|
分辨率
|
640×480
|
存储
|
|
物理存储
|
4GB
|
硬盘
|
32G固态硬盘 用于存储试验记录及试验数据
|
接口
|
|
RS232*1
|
用于与PC机同步传输接口
|
USB*2
|
可外接鼠标键盘,以及外接移动存储设备
|
电源模式
|
电池供电(16.8V锂电池)+外置电源(220V AC)
|
电信号接口
|
2/4路BNC接口,用于信号输入
|
E-Trig接口
|
外同步接口
|
网口*1
|
用于连接网络
|
接地钮
|
外部接地用
|
通用说明
|
|
CPU
|
主频1.6GHz
|
系统
|
WIN7
|
使用环境温度
|
-20℃至60℃
|
存储环境温度
|
-20℃至85℃
|
尺寸
|
280*190*80 mm
|
重量
|
3.5kg
|
配置清单
|
主机
|
用于信号采集、波形显示、数据处理、存储
|
超声波传感器
|
用于测量局部放电产生的超声波信号
|
检测频带
|
20~200kHz
|
灵敏度
|
≤10 pC
|
增益
|
100dB
|
超高频传感器(UHF)
|
用于测量GIS中局部放电产生的超高频信号
|
检测频率
|
300~1500MHz
|
HFCT(高频电流互感器)
|
用于测量设备接地线中通过的局部放电信号
|
检测波段
|
500kHz~30MHz
|
检测灵敏度
|
-100dB/10pC
|
TEV传感器
|
用于测量开关柜等高压设备局部放电、定位
|
信号采集
|
电容式
|
检测频率
|
3~100MHz
|
测量范围
|
-20~60dB/mV
|
声电组合探测器
|
用于测量电缆接头局部放电
|
超声波传感器
|
用于测量电缆接头局部放电产生的超声波信号
|
中心频率
|
40kHz
|
灵敏度
|
≤10 pC
|
电信号传感器
|
用于测量电缆接头局部放电产生的电磁波信号
|
检测频带
|
20k~1MHz
|
灵敏度
|
≤10 pC
|
引用标准(WBPCD-4000在线局放分析仪设计精巧,结构简单)
高压开关设备和控制设备标准的共用技术要求 DL/T 593
3.6kV~~40.5kV 交流金属封闭开关设备和控制设备 DL/T 404
3.6kV~~40.5kV 交流金属封闭开关设备和控制设备 GB 3906
局部放电测量GB/T 7354
电力设备局部放电现场测量导则 DL/T 417
高电压试验技术 第1部分:一般试验要求 GB/T 16927.1
高电压试验技术 第2部分:测量系统 GB/T 16927.2
高电压试验技术 第3 部分: 现场试验的定义及要求 GB/T 16927.3
各种高压设备测量(WBPCD-4000在线局放分析仪设计精巧,结构简单)
变压器测量
1、超声波法检测原理
当变压器内部产生放电信号时,除产生放电脉冲电流沿容性回路传输外,同时还会激发出机械波(超声波)信号通过变压器油向四周辐射传播。虽然电力变压器的结构较为复杂,但是变压器的整个器身内充满了变压器油,而绕组、绝缘材料、支撑、夹件、引线等部件均浸在油中,由于变压器油为超声波的良好传播媒介,这为在箱壁外侧检测局放产生的超声信号提供了有力条件。所以,在变压器的箱壁外侧安放超声波传感器可以接收到内部较大的放电信号。
2、 脉冲电流法检测原理(HFCT)
由电力变压器的结构所决定,其绕组除匝间电容外还与铁心之间存在几百甚至几千皮法的分布电容,同时绕组与油箱间也存在上百皮法的分布电容。当变压器的绕组等主绝缘回路中发生局部放电时,其产生的高频信号覆盖了从几十千赫兹到几十兆赫兹,甚至到千兆赫兹,由于几百皮法电容对于几百千赫兹以上的高频信号相当于通路,所以放电信号就会向所有与放电点有容性关系的回路中传播,其中一条回路必然包括铁心接地回路。所以在铁心接地线上安装高频电流互感器可有效接收变压器内放电信号。
改革开放以来,我国电力工业始终紧扣社会主要矛盾,适时推进电力体制改革,及时调整和优化电力生产关系,极大促进了电力生产的发展。十九大报告指出:“我国社会主要矛盾已经转化为人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾。”人民群众需求的变化,对我国发展全局产生着广泛而深刻的影响。新时代,我国电力工业发展的主要矛盾从过去的“国民经济快速发展和人民群众生活水平日益提高所必需的用电需要与落后的电力生产之间的矛盾”,历史性地转变为“人民日益增长美好生活所需的多元化用电需要和电力工业不平衡不充分发展的矛盾”,而推动电力工业高质量发展正是解决这一矛盾的方向与主线。可靠、绿色、高效是新时代电力高质量发展三个重要内涵,是辩证统一的有机整体。实现电力高质量发展必须正确认识三者定位,不能偏重偏废。
扬州万宝转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。