抗体是生物体内**系统用于中和有害的外源物质的一种特异的蛋白质,捕获天然抗体或人工制备高度特异性的抗体一直是蛋白质组学研究中的热点领域。近年来各个研究机构及企业的研究人员也在致力于构建具有多靶向性的抗体。
“合成双特异性抗体的新浪潮即将来到,”Genentech公司的神经生物学家RyanWatts说道:“它们将成为这一领域中的研究热点。”
血脑屏障是机体参与固有**的一个重要的内部屏障,它能够阻挡病原生物和其他大分子由血循环进入脑组织和脑室。从而保护脑组织避免循环血液中有毒物质的损害。由于抗体通常无法通过血脑屏障,因此在大脑中抗体的浓度约比在血液中要低一千倍。
在新研究中,Watts等合成了一种能通过血脑屏障且具有双蛋白质靶向性的抗体。其靶向的β分泌酶(β-secretase)是当前阿尔茨海默症**的一个重要的**开发靶点。过去的研究证实β-secretase在大脑的淀粉样肽生成中起重要作用。
这一抗体靶向的**种蛋白质则是转铁蛋白受体(transferrinreceptor)。在正常情况转铁蛋白受体可通过与转铁蛋白的相互作用介导大脑中的铁摄取。研究人员利用转铁蛋白将抗体输送至大脑中,从而确保其能在大脑中作用于β-secretase。
研究人员证实这种双特性抗体能在阿尔茨海默症模型小鼠中很好地发挥作用。在每天接受一次抗体注射后,小鼠大脑中的β淀粉样蛋白的浓度下降了47%。
“我们设计合成这一新型抗体是基于一种独特的理念,挑战了抗体工程中的一个重要的法则,”Watts说。
抗体与抗原之间的相互作用力通常被称之为抗体的亲和力(affinity)。亲和力越高则表明抗体与抗原之间的相互作用力越强。长期以来大多数的抗体工程技术人员都致力于合成出具有高亲和力的抗体,从而确保抗体能与抗原紧密的结合。
Watts和另一位抗体工程人员MarkDennis在*初是希望能够合成出对转铁蛋白具有高亲和力的抗体。然而他们却发现这些高亲和力的抗体被阻止在血管中无法通过脑组织。Dennis由此推测抗体有可能是被转铁蛋白受体截留在了血管中,于是他开始设计合成低亲和力的抗体。正如Dennis所预想的一样,合成的低亲和力抗体能够更广泛地分布到大脑中。
“这是一个极好的范例,它表明在考虑多特异性蛋白质**时,我们必须抛开某些我们从单克隆抗体中学习到的规则和模式,”这一研究的负责人DavidHilbert说。
目前Hilbert正在努力研发能同时识别5种不同靶蛋白的多特异性抗体。Hilbert认为多特异性抗体的设计理念还可运用到其他的领域,例如癌干细胞中。科学家们通常根据其表达的细胞表面标志蛋白来识别癌干细胞。然而由于这些表面标志有时候也存在于其他的一些健康细胞中。常规的高亲和力单克隆抗体会在靶向癌细胞的同时杀伤健康细胞,而低亲和力的多靶向性抗体则能够更具有选择性地靶向癌干细胞。
推荐原文检索:
1.A Therapeutic Antibody Targeting BACE1 Inhibits Amyloid-βProduction in Vivo
2.Boosting Brain Uptake of a Therapeutic Antibody by ReducingIts Affinity for a Transcytosis Target