

AI-218 型人工智能温度控制器 使用指南

(V9.2)

1. 主要特点

- ●为塑料机械、食品机械、包装机械、烘箱、环境实验设备·····等行业设计。 具备操作简便、易学易用及价格低廉的特点。
- ●全球通用的 100-240VAC 范围输入的开关电源或 24VDC 电源供电, 具备 50Hz/60Hz 电源频率及它 / °F 单位选择功能。
- ●输入可自由选择热电偶或热电阻,输出采用先进的模块化结构,规格丰富, 交货迅速且维护方便。
- ●采用具备自整定 (AT) 功能的 AI 人工智能调节算法,控制准确且无超调。
- "发烧"级硬件设计,采用钽电容或陶瓷电容取代普通电解电容,具备比同级产品更低的电源消耗、更高的可靠性、稳定性及更宽广的温度使用范围;其电源及 I/O 端子均通过 4KV/5KHz 的群脉冲抗干扰实验。
- ●通过 ISO9001 质量认证、ISO14001 环境管理体系认证和 CE 认证,在质量、抗干扰能力及安全标准方面符合国际水准。

2. 型号定义

仪表型号由4部分组成,如下:

① 表示仪表型号

AI-218 型人工智能温度控制器。0.3 级测量精度、最高显示分辨率为 0.1℃

② 表示仪表面板尺寸规格

A1 面板 96×96mm, 开□ 92^{+0.5}×92^{+0.5}mm, 插入深度 70mm

B1 面板 160×80mm (宽 × 高), 开□ 152^{+0.5}×76^{+0.5}mm, 插入深度 70mm

C1 面板 80×160mm (宽×高),开□ 76*0.5×152*0.5mm,插入深度 70mm

D1 面板 48×48mm, 开□ 45^{+0.5}×45^{+0.5}mm, 插入深度 80mm

D2 面板 48×48mm, 开□ 45^{+0.5}×45^{+0.5}mm, 插入深度 95mm

D61 面板 48×48mm, 开□ 46^{+0.5}×46^{+0.5}mm, 插入深度 80mm

D 面板 72×72mm, 开□ 68^{+0.5}×68^{+0.5}mm, 插入深度 70mm

E1 面板 48×96mm (宽 × 高), 开口 45^{+0.5}×92^{+0.5}mm, 插入深度 70mm

F1 面板 96×48mm (宽×高),开□ 92^{+0.5}×45^{+0.5}mm,插入深度 70mm

③ 表示仪表主输出 (OUTP) 安装的模块规格

- L 表示为继电器输出,规格为 2A/250VAC, 大体积,仅常开端具备火花吸收功能
- G 表示为 SSR 电压输出,规格为 30mA/5VDC
- X3 光电隔离的可编程线性电流输出模块

④ 表示仪表报警 (ALM) 安装的模块

可安装 L0、L2、L4 等单路继电器模块或 L3 双路继电器模块作报警输出

⑤ 表示仪表辅助输出 (AUX) 安装的模块

可安装 L0、L2、L3、L4 等继电器模块作为报警输出

⑥ 表示仪表供电电源

不写表示使用 100~240VAC 电源, 24VDC 表示使用 20-32VDC 电源。

3. 技术规格

●輸入规格: K、S、R、E、J、N、Pt100

●測量范围: K(0~1300 ℃)、S(0~1700 ℃)、R(0~1600 ℃)、E(0~1000 ℃) J(0~1200 ℃)、N(0~1300 ℃)、Pt100(-200 ~+800 ℃)

●测量精度: 0.3%FS±1℃或 0.3%FS±0.1℃;

●调节方式:位式调节方式(ON-OFF)或带自整定(AT)功能的 AI 人工智能 PID 调节

●输出规格:

L 继电器触点开关输出(常开): 250VAC/2A或 30VDC/2A

G 固态继电器 (SSR) 电压输出: 5VDC/30mA(用于驱动 SSR 固态继电器)

X3 0~20mA 或 4~20mA 可定义 (安装 X3 模块时输出电压≥ 10.5V; X5 模块 输出电压> 7V)

●报警功能: 上限报警、下限报警及正负偏差报警功能,可选购安装继电器模块将报警信号输出

●电 源: 100~240VAC, -15%, +10%/50~60Hz

●电源消耗: ≤3W

●使用环境: 温度 -10~+60℃ 湿度 0~90%RH

4.操作方法

4.1 基本显示状态

仪表上电后,仪表上显示窗口显示测量值(PV),下显示窗口显示给定值(SV)。该显示状态为仪表的基本显示状态。输入的测量信号超出量程时(如热电偶断线时),则上显示窗交替显示"orAL"字样及测量上限或下限值,此时仪表将自动停止控制输出。

仪表面板上按不同尺寸分别有6~10个指示灯,其中OP1用于指示控制输出,AL1、AL2、AU1、AU2分别对应报警输出动作,其余指示灯本系列仪表不用。

4.2 改变设定温度

在基本显示状态下,如果参数锁没有锁上,可通过按 ①、 ② 、 △ 键来修改下显示窗口显示的设定温度控制值。按 ② 键减小数据,按 △ 键增加数据,可修改数值位的小数点同时闪动(如同光标)。按键并保持不放,可以快速地增加 / 减少数值,并且速度会随小数点会右移自动加快(3 级速度)。而按 ② 键则可直接移动修改数据的位置(光标),按 △ 或 ② 键可修改闪动位置的数值,操作快捷。给定值可设置的最大数受参数 SPL 及 SPH 参数限制。

按按使使使</t

4.3 自整定 (AT) 操作

采用 AI 人工智能 PID 方式进行控制时,可进行自整定(AT)操作来确定 PID 调节参数。在基本显示状态下按《创键并保持 2 秒,将出现 At 参数,按《创键将下显示窗的 oFF 修改 on,再按《创键确认即可开始执行自整定功能。在基本显示状态下仪表下显示窗将闪动显示 At 字样,此时仪表执行位式调节,经 2 个振荡周期后,仪表内部微处理器可自动计算出 PID 参数并结束自整定。如果要提前放弃自整定,可再按《创键并保持约 2 秒钟调出 At 参数,将 on 设置为 oFF 后按《创键确认即可。

注 1: AI-218 采用先进的综合了 AI 人工智能技术的 PID 调节算法 (简称 APID) ,解决了标准 PID 算法容易超调的问题,控制精度高。

注 2: 系统在不同给定值下整定得出的参数值不完全相同,执行自整定功能前,应先将给定值 SV 设置在最常用值或是中间值上,如果系统是保温性能好的电炉,给定值应设置在系统使用的最大值上,自整定过程中禁止修改 SV 值。视不同系统,自整定需要的时间可从数秒至数小时不等。

注 3: 位式调节回差参数 CHYS 的设置对自整定过程也有影响,一般 CHYS 的设定值越小自整定参数准确度越高。但 CHYS 值如果过小则可能因

输入波动引起位式调节的误动作,这样反而可能整定出彻底错误的参数,推荐 CHYS=2.0。

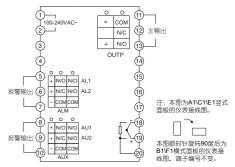
注 4: 自整定刚结束时控制效果可能还不是最佳,由于有学习功能,因此使用一段时间后方可获得最佳效果。

5.设置参数

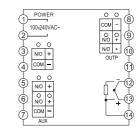
在基本设置状态下按 ③ 键并保持约 2 秒钟,即进入现场参数表。按 ⑤ 键可显示下一参数。 如果参数没有锁上,用 ④ 、 ⑤ 、 ⑥ 等键可修改参数值。按 ④ 键并保持不放,可返回显示上一参数。先按 ④ 键不放接着再按 ⑥ 键可退出设置参数状态。如果没有按键操作,约 20 秒钟后会自动退出设置参数状态。设置 Loc=808,可进入系统参数表,如下表。

5.1 参数表

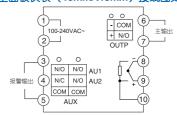
参数 代号	参数 含义	说明		
HIAL	上限报警	测量值 PV 大于 HIAL 值时仪表将产生上限报警。测量值 PV 小于 HIAL-AHYS 值时,仪表将解除上限报警。 注:每种报警可自由定义为控制 AU1、AU2 等输出端口动作,也可以不做任何动作,请参见后文报警输出定义参数 AOP 的说明。		
LoAL	下限报警	当 PV 小于 LoAL 时产生下限报警, 当 PV 大于 LoAL+AHYS 时下限报警解除。 注:为避免刚上电时因温度偏低而导致下限报警总是被触发,上电时总是先暂时免除下限报警功能,只有温度升高到 LoAL 以上后,若再低于 LoAL 才产生报警。	-999~ +3200	
HdAL	偏差上 限报警			
LdAL	偏差下 限报警	当偏差(测量值 PV 减给定值 SV)小于 LdAL 时产生偏差下限报警。当偏差大于 LdAL+AHYS 时偏差下限报警解除。设置 LdAL 为最小值时,该报警功能被取消。		
Loc	参数修改级别	Loc=0,允许修改现场参数、允许在基本显示状态下直接修改给定值; Loc=1,禁止修改现场参数、允许在基本显示状态下直接修改给定值; Loc=2-3,允许修改现场参数,但禁止在基本显示状态下直接修改给定值; Loc=4-255,不允许修改Loc以外的其它任何参数,也禁止全部快捷操作。 设置Loc=808,再按 ③ 确认,可进入系统参数表。		
AHYS	报警 回差	又名死区、滞环,用于避免因测量输入值波动 而导致报警频繁产生/解除。	0~999	

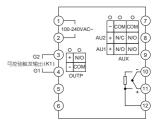

AdIS	报警指示	OFF,报警时在下显示不显示报警符号。 on,报警时在下显示器同时交替显示报警符号 以作为提醒,推荐使用。 FOFF,节能/保密显示模式,此模式下仪表会 关闭测量值和给定值的显示,可以节约仪表耗电或保 密工艺温度,下显示窗显示当前站号,报警时会显示 报警符号。	
AOP	报警输出定义	AoP 的 4 位数的个位、十位、百位及千位分别用于定义 HIAL、LoAL、HdAL 和 LdAL 等 4 个报警的输出位置,如下: AOP = 3	0~ 4444
CtrL	控制方式	onoF, 采用位式调节 (ON-OFF),只适合要求不高的场合进行控制时采用。 APId. 采用 AI 人工智能 PID 调节,具备无超调高精度控制效果。 nPId: 采用标准 PID 调节,并有抗饱和积分功能。	
Srun	运行 状态	run,运行控制状态。 StoP,停止状态,下显示器闪动显示"StoP"。 HoLd,保持运行控制状态。禁止从面板执行运行 或停止操作。	
Act	正/反作用	rE,为反作用调节方式,输入增大时,输出趋向减小,如加热控制。dr,为正作用调节方式,输入增大时,输出趋向增大,如致冷控制。rEbA,反作用调节方式,并且有上电免除下限报警及偏差下限报警功能。drbA,正作用调节方式,并且有上电免除上限报警及偏差上限报警功能。	rE dr rEbA drbA
At	自整定	OFF, 自整定 At 功能处于关闭状态。 on, 启动 PID 及 Ctl 参数自整定功能, 自整定结束后会自动返回 FOFF。 FOFF, 自整定功能处于关闭状态, 且禁止从面板操作启动自整定。 AAt, 快速自整定功能, 自整定结束后自动返回OFF。	
Р	比例带	P 为定义 APID 及 PID 调节的比例带,单位为它或°F,而非采用量程的百分比。 注:通常都可采用 At 功能确定 P、I、D 及 Ctl 参数值,但对于熟悉的系统,比如成批生产的加热设备,可直接输入已知的正确的 P、I、D、Ctl 参数值。	0.1~ 3200
ı	积分 时间	定义 PID 调节的积分时间,单位是秒,I=0 时取消积分作用。	0~9999 秒
d	微分时间	定义 PID 调节的微分时间,单位是 0.1 秒。d=0时取消微分作用。	0~3200 秒
Ctl	輸出周期	采用 SSR 或可控硅输出时一般设置为 0.5~3.0 秒。当输出采用继电器开关时,短的控制周期会缩短机械开关的寿命或导致冷/ 热输出频繁转换启动,周期太长则使控制精度降低,因此一般在 15~40 秒之间,建议 Ctl 设置为微分时间(基本应等于系统的滞后时间)的 1/4~1/10 左右。	0.1~300 秒

CHYS	位式调 节回差	用于避免 作。如加热 当 PV 小于	0~999				
InP	輸入规格	InP用于如下: InP 0 2 4 6 8-20	施择输入规格KRE备用备用	InP 1 3 5 7 21	対应的输入 輸入规格 S T J N Pt100	规格	0~21
	/\ aub					J	0/0.0
dPt Scb	分辨率 主输入 平移 修正	#0"表 Scb 参数 输入信号、i PV 补偿前 + 注: 一般	-999~ +400				
FILt	输入数 字滤波	FILt 决规测量数据的可逐步增大可。当仪表以提高响应	0-100				
Fru	电源频 率及温度单位 选择	50C 表 大抗干扰能 50F 表 大抗干扰能 60C 表 大抗干扰能 60F 表 大抗干扰能					
OPt	输出类 型	SSr, 输为 * FELy, * * * * * * * * * * * * * * * * * * *					
AF	高级功能代码	AF 参数用于选择高级功能,计算方法如下: AF=A×1+B×2+E×16 A=0,HdAL及LdAL为偏差报警;A=1,HdAL及LdAL为绝对值报警,这样仪表可分别拥有2路绝对值上限报警及绝对值下限报警。 B=0,报警及位式调节回差为单边回差;B=1,为双边回差。 E=0,HIAL及LOAL分别为绝对值上限报警及绝对值下限报警;E=1,HIAL及LOAL分别改变为偏差上限报警及偏差下限报警,这样有4路偏差报警。注:若非专家级别用户,请设置该参数为0。					0~255
bAud	波特率	48x48 月	7寸需用到,	AU2 报警时	应设为 3,	其他尺	
		寸应设 9600					
SPL	SV下限		设置的最小				-999~
SPH	SV 上限	SV 允许	+3200				


6. 接线方法

注: 因技术升级或特殊订货等原因,仪表随机接线图如与本说明书不符,请以 随机接线图为准。


A1、B1、C1、E1、F1 型仪表尺寸接线图:


D型面板仪表 (72mmX72mm) 接线图如下:

D2/D21 型面板仪表 (48mmX48mm) 接线图如下:

D61 型面板仪表 (48mmX48mm) 接线图如下:

注 1: 热电偶应用补偿导线直接接入仪表后盖输入端子上,中间不得转用普通导线连接,并注意补偿导线型号与极性 的正确。

注 2: 外接的固态继电器 (SSR) 应使用输入与输出 之间隔离耐压大于 2300V 的产品 (CE 认证的安全要求)。

プリロIAN www.yudian.com 技术热线: 400 888 2776 版权所有@1994-2022