—,	概述	1
二、	功能和特点	1
三、	主要技术指标	4
	1. 准确度、显示位数及模式 ·······	4
	2. 输入	4
	3. 可编程设定	5
	4. 绝缘强度	6
	5. 电磁兼容	6
	6. 稳定性	6
	7. 工作条件 ······	7
	8. 储藏条件 ······	7
	9. 工作电源	7
	10. 重量	7
	11. 外形尺寸	7
	12. 端子定义	7
四、	工作原理	9
	1. 工作原理	9
	2. 硬件框图	9
	3. 软件框图 ······	10
	4. 测量参数表示方法及计算公式	11
五、	操作指南	13
	1. 盘面布置	13
	2. 键盘定义	13
	3. 显示符号定义	14
	4. 菜单	15
	5. 操作菜单结构 ······	16
六、	接线与安装	80
	1. 接线 ······	80
	2. 安装与维护 ····································	86
	3. PT 和 CT 的选择 ···································	86
	4. PT 和 CT 的连接 ···································	87
七、	通讯连接	88
	1. 网络布局	88

2. 连接到计	算机	• • • • • • • • • • • • • • • • • • • •	88
八、通讯规约	••••••		91
1. 引言	••••••		91
2.ModBus的]基本规则 •••••••		91
3. 数据帧格:	式		92
4. GD2100 通	讯地址		93
附录一、数据和	地址		101
表 1: 功能研	码 03H 所映射的数据区−基本数据		101
表 2: 功能码	码 03H 所映射的数据区−电能		102
表 3: 功能研	码 03H 所映射的数据区−时间		102
表 4: 功能码	码 03H 所映射的数据区−系统参数		103
附录二 、数据变	换 ••••••		104
附录三 、外形	•••••		105

一. 概 述

GD2100 智能电力测控仪(以下简称: GD2100)是一种具有可编程功能、遥测、遥 信、遥控、自动控制、电能累加、实时时钟、LCD 显示、数字通讯等功能为一体的智能 三相综合电力测控仪表,它集数字化、智能化、网络化于一身,使测量过程及数据分析 处理实现自动化,减少人为失误,能够全面替代电量变送器、电度表、数显仪表、数据 采集器、记录分析仪等仪器,是组成电气自动化系统的理想产品。其结构紧凑、电路先 进、功能强大,是对传统仪表的革命性设计。

GD2100 可广泛应用于电力、邮电、石油、煤炭、冶金、铁道、市政、智能大厦等 行业、部门的电气装置、自动控制以及调度系统。

二. 功能和特点

◆ 测量功能多,精度高

GD2100 功能强大,它集合了电量变送器、数字式电度表、数显表、数据采集器、 记录分析仪、RTU 等仪器的部分或全部功能。测量功能包括:一条三相四线回路或其它 任何线制的全部相/线电压(V)、电流(I)、功率(P、Q、S)、电能(Wh、Qh)、功率 因数(COS),频率(F)及零序电流(I0)等。

作为显示仪表使用时可以代替:三相电流表、三相电压表、三相视在功率表、三相 有功功率表、三相无功功率表、三相功率因数表、三相有功电能表、三相无功电能表、 频率表、零序电流表等。

在自动化系统中用作数据采集时可以代替:三相电流变送器、三相电压变送器、三 相视在功率变送器、三相有功功率变送器、三相无功功率变送器、三相功率因数变送器、 频率变送器、零序电流变送器等以及数据采集模块、RTU等。

作为电能计量仪表时可以代替:三相有功电能表、三相无功电能表等。

仪表采用高精度高稳定的模数(A/D)转换器件,功率、电度精度可达 0.5 级,其它 参数可达 0.2 级。

● 三遥与自动控制

GD2100具有六路(空结点)遥信输入,三路继电器(每路均为常开和常闭双触点) 遥控输出,加上遥测及通讯功能组成完备的三遥功能。三路继电器还可由用户设定为 自动出口控制,如过流、欠压、断相等条件下出口继电器动作等。 ◆ 中、英文显示

GD2100 采用 LCD 大屏幕液晶显示,中、英文两套界面可转换,非常适合中国国情。 显示器采用人的眼睛感觉比较自然舒适的蓝背光,体现了人文关怀的理念。同时可显示 多达 4 个参数,并能通过手动或自动设定,按顺序读出超过 30 个参数。

标准规约、轻松组网

GD2100 为了满足未来测量仪表的环境,配有 RS-485 和 RS-232C 串行口,允许连接开放式结构的局域网络。

应用 Modbus (RTU 和 ASCII 两种模式)通讯规约,通过在 PC 机或数据采集系统上运行的软件,能提供一个对于工厂、电厂、工业或建筑物的服务的简单、实用的电量管理方案。

◆ 自动稳零

具有自动校准零点,克服零点随时间和温度的漂移。实现所有参数的零点免调,提高了仪表的整体测量精度,提高了系统的整体稳定性,简化了校准流程。

• 极宽的动态输入范围

GD2100采用量程自动切换技术,提供 5~120V/600V 的电压输入量程,0~1A/5A 电 流输入量程,能自动适用于各种测量系统,无需任何硬件和软件的调整。

◆ 内部实时时钟(RTC)

GD2100提供内部的 RTC (实时时钟),精确记录系统时间。

可编程状态设定

GD2100 允许用户对其工作状态"测量系统选择"、"CT、PT 变比"、"显示内容"、"通讯"、"时钟"、"电能累加复位"、"继电器自动控制出口条件"等进行更改设定。

◆ 记忆

GD2100 在电源掉电时,能够记忆所有的当前工作状态或设定值、电能累加数值、 时间、PT 变比、CT 变比。 多种接线方式

适用于多种接线方式:三相四线、三相四线平衡负载、三相三线、三相三线平衡负载、一相二线和一相三线。

◆ 数字化整定

所有参数均采用数字化校准,在专用校准调试软件控制下自动进行,减少了人为因 素带来的偏差。摒弃了常规采用电位器的模拟调整方法,简化了硬件电路,提高了整机 的可靠性和稳定性。

◆ 故障自动诊断

具有故障自动判断功能,并将结果显示在屏幕上或通过串行口输出。

◆ 抗电磁干扰能力强

完善的电磁兼容性设计,具有极强的抗电磁干扰能力,符合 IEC61000-4 标准,适 合在强电磁干扰的复杂环境中使用。

◆ 安装方便

GD2100 强大的功能使系统现场安装、布线的复杂程度和材料的综合成本降低了。 采用盘面安装方式,外形尺寸符合马赛克屏开孔标准(开孔尺寸为175×125 mm), 便于安装。

三. 主要技术指标

1 准确度、显示位数及模式

参数	位数	显示(最大)	准确度	
电压 V _X	5	9.9.9.9.9.V/kV	0.2%RD	
电流 I _{Xx}	5	9.9.9.9.A/kA	0.2%RD	
有功功率 P	5	9.9.9.9.W/kW/MW/GW	0.5%RD	
无功功率 Q	5	9.9.9.9.var/kvar/Mvar/Gvar	0.5%RD	
视在功率 S	5	9.9.9.9.VA/kVA/MVA/GVA	0.5%RD	
功率因数 PF	5	1.0000	0.5%RG	
有功电能 Wh	8	9.9.9.9.9.9.9.9.Wh/kWh/MWh	0.5%RD	
无功电能 Qh	8	9.9.9.9.9.9.9.9.varh/kvarh/Mvarh	0.5% <mark>R</mark> D	•
零序电流 I0	5	9.9.9.9.A/kA	0.2%RG	
频率 Hz	5	70.000 Hz	0.2%RG	

各相参数显示符号:

2.3 过载能力

电压: 750V 连续 1000V 10 秒 1200V 3 秒

电流: 2 倍额定连续

10 倍额定 30 秒

25 倍额定2秒

50 倍额定1 秒

- 2.4 开关量输入(遥信)/输出(遥控)
 - 开关量输入 六路空接点输入(遥信): 响应时间 50ms

三路继电器输出

常开/常闭双触点输出 开关量输出

触点负载能力: 5A 长期通电 (遥控/自控):

出口延时和返回时间可设定

通讯方式遥控输出或按设定条件自动出口

2.5 测量系统接线方式 三相四线/三相三线/一相二线或三线/三相平衡,通过键盘及串行口软件设定选择。

3	可编程设定	
	编柱惧式:	
	测量系统选择:	三相四线/三相三线/一相二线/一相三线/三相平衡
	CT, PT 变比:	1~59999
	显示内容:	换页时间/画面选择
	开关量输出(遥控)	(过流、欠压、断相)定值、延时时间和返回时间
		波特率: 300/600/1200/2400/4800/9600/19200
		数据位: 8 或 7
	运讯	校验位:奇 / 偶 / 无校验位
	迪叭:	停止位:1或2
		地 址: 1~247
		通讯规约:Modbus RTU/Modbus ASCII

GD2100智能电力测控仪使用手册

	RS-485 / RS232C,在同一时间只能用其中之一
╓┿┟╖	年、月、日、时、分、秒、星期
р) ţ µ :	时钟误差: 0.5 秒/24 小时
电能累加复位:	(口令)
校准:	(口令)

4 绝缘强度

对象:	在输入 / 输出 / 电源之间
引用标准:	IEC688-1992
试验方法:	AC2KV1分钟 漏电流 2mA

5 电磁兼容

5.1	1.2/50-8/20uS	; 浪 涌		
	对象:	电源、I/O 线	C	
	引用标准:	IEC61000-4-5	/IEC61000-4-	-
	试验方法:	$4\text{KV} (1.2 \times 50 \text{uS})$		

5.2 快速瞬变脉冲串 对象: 电源、I/O 线
引用标准: IEC61000-4-4
试验方法: 电源: 4KV2.5KHz

I/O 线: 2KV 5KHz

 5.3 静电放电
 电源、I/O 线

 对象:
 电源、I/O 线

 引用标准:
 IEC61000-4-2

 试验方法:
 接触放电; 6KV

 气隙放电:
 8KV

射频电磁场 对象: 设备本体 引用标准: IEC61000-4-3 试验方法: 10V/m 中等强度的电磁辐射(如距离不少于1米 的手提对讲机)

6 稳定性

温度范围: -10~+50℃

		-		
		温度影响:	100ppm/°C	
		长期稳定性:	<0.2%/年	
7	工作	条件 温度:	−10~+50°C	
		湿度:	20~95%	无凝露
8	储藏统	条件 温度:	-25~+75℃	
		湿度:	20~95%	无凝露
9	工作	电源 电源电压:	AC 85~265V	40~70Hz,DC 85~330V(标准)
			DC 18~90V	(可选)
		整机功耗:	<12W	
10	重量	净重:	700g	
		毛重:	-	
11	外形	尺寸 外形尺寸:	201mm(长	:)×140mm(宽)×115mm(深)
		安装开孔尺寸	† : 175mm×1	125mm
12	端子》	定义	.8	
			3 4 5	
		U1 U2 U	J3 U0 4	I1 \downarrow $_*$ I2 \downarrow $_*$ I3 \downarrow $_*$ I0 \downarrow
		K1 C1 B1 13 14 15 28 29	K2 C2 B2 16 17 18 30 31 32 3	K3 C3 B3 Va T2 R2 G2 rPower1 19 20 21 22 23 24 25 26 27 3 34 35 36 37 38 39 40 41
		X1 X2	X3 X4 X5 X	(6 XV G4 A+ B- GS TS RS Ground
2	Æ	X1 X2	X3 X4 X5 X	K6 XV G4 A+ B- GS TS RS Ground
2		X1 X2	$\overline{X3} \overline{X4} \overline{X5} \overline{X}$	(6 XV G4 A+ B- GS TS RS Ground)
2		$\begin{array}{c c} \hline X1 & X2 \\ \hline $	$\begin{array}{c c} \hline x3 & \hline x4 & \hline x5 & \hline x\\ \hline & & & \\ \hline \\ \hline$	(6 XV G4 A+ B- GS TS RS Ground)

	编号	符号		备注			
	1	U1	第一路电压输入端(Uan 或 Uab)				
	2	U2	第二路电压输入端(Ubn)		参见后续各		
	3	U3	第三路电	已压输入端	(Ucn 或 Ucb)	柙 接 线 方 式	
	4	U0	三相四线	 制接线中	线输入端(Un)	下的接线图	
	5	I1*			(-)	带*号端为电	
	6	I1	第一路电	且沇输入端	(la)	流输入端	
	7	I2*		\ \		带*号端为电	
	8	I2	第二路电	し 流 输 入 靖	(\mathbf{lb})	流输入端	
	9	I3*		- \ * +A \ _山	()	带*号端为电	
	10	I3	第二路电	已流输入端	(\mathbf{lc})	流输入端	
	11	I0*				带*号端为电	
	12	IO	零序电流	前输入端((0)	流输入端	
	13	K1			常开触点	第一路继电	
	14	C1	第一距	各出口	公共端	器转换触点	
	15	B1	•••		常闭触点	输出	
	16	K2			常开触点	第二路继电	
	17	C2	第二距	各出口	公共端	器转换触点	
	18	B2			常闭触点	输出	
	19	K3			常开触点	第三路继电	
	20	C3	第三副	各出口	公共端	器转换触点	
	21	B3			常闭触点	输出	
	22	Va,GS	一路模拟	电压输入		-10V +10V	
	23	T2			发送端		
	24	R2	RS-2	232C	<u></u>	RS-232C 通	
	25	G2			信号地	讯接口	
	26		辅助电压	压输入(AC 85~265V)		DC 18 – 90V	
	27	Power		(DC	$2.85 \sim 330 \text{V}$	可选	
	28	X1	第-	-路		谣信以无源	
	29	X2	第二			空接占形式	
	30	X3				输入,接点—	
	31	X4		 四路	遥信输入端	端接 Xn 另一	
	32	X5		<u></u> F 路		端连在一起	
	33	X6	273	六路		接公共端	
	34	XV	757	遥信输入	、公共端	隔离+12V 电 酒	
	35	G4		信号地(/////////////////////////////////////	
*	36	A+	RS-485	市ち地へ	ᇑᅎᄞᅎᅝᄼᄱ	不雪 按 信 早	
	37	B-	105 -05	5-40.7 止似追病			
	38	GS		ショルロエキ町	信号地		
	39	TS	☆ 実设 5	さ RS_2320	安送	厂家保留,生	
	40	RS	KK WA	<u> </u>	_ <u>久</u> ⊵师 	产调试用	
	41	Ground		右条件时均	<u>)ヌヤヌ炯</u> 【此誤可复连士州〉		
	-T1	Ground	」女八兆(1	日本什門付	呱炯川非汝入心)	1	

四. 工作原理

1. 工作原理

GD2100 由测量、显示、控制、通讯接口和电源等部分组成。

测量部分由精密小型电压互感器、精密小型电流互感器(输入:0~600V、0~5A) 及前置信号处理电路构成,从中获取电压、电流、频率、相位等实时数据;显示部分采 用高品质的液晶(LCD)显示模块,每屏可以显示 8×4 个汉字(16×16)或 128×64 个像素的图形;控制部分以 16 位高性能单片机为核心,配以多路 A/D,实时时钟,以 及容错电路等外围芯片;接口部分采用 RS-485 和 RS-232C 接口,用于和上位机实时通 信。电源部分采用高频开关电源,使得仪器更加节能,更能适应各种不同的电源电压环 境。

软件主要实现测量数据计算、开关量输入输出控制、参数设定、电能累加、各部分 的管理、异常情况的判断处理、人机界面等功能。由于软件量较大、功能复杂,因此程 序采用了先进的编程理念:功能模块化,结构格式化,任务简单化,时间多元化。具有 多种优点:程序维护简单,流程清晰明了,事件并行处理,响应快速有效。

为了提高系统的可靠性、稳定性,内部装有高稳定度基准源,温度监测及采用软硬 件冗余等容错技术;为了提高整机的抗干扰能力,采取了多项电磁兼容保护措施,确保 在恶劣的工作环境下也能安全工作。

2. 硬件框图:

3. 软件框图:

^ `

- 4. 测量参数表示方法及计算公式:
 - 4.1 电压

相电压	V_1 V_2 V_3	$V_n = \sqrt{\left(\sum Ui^2\right)/n}$
线电压	V_{12} V_{23} V_{31}	$V_{ij} = \vec{V}_i - \vec{V}_j $
平均相电压	Ve	$Ve = (V_1 + V_2 + V_3)/3$
平均线电压	Ve0	$Ve0 = (V_{12} + V_{23} + V_{31})/3$

4.2 电流

相电流	$I_1 I_2 I_3 I_0$	$I_n = \sqrt{\left(\sum li^2\right)/n}$
平均相电流	Ie	$Ie = (I_1 + I_2 + I_3)/3$

4.3 有功功率

单相有功 P1 P2 P3	$P_{i} = V_{i} \times I_{i} \times PF_{i} \square V_{i} \times I_{i} \times \cos \phi_{i}$
总有功功率 P	$P = P_1 + P_2 + P_3$

4.4 无功功率

-					
	单相无功	Q_1 Q_2 Q_3	$\mathbf{Q}_{i} = \mathbf{V}_{i} \times \mathbf{I}_{i} \times \sin \phi_{i}$		
	总无功功率	Q	$Q = Q_1 + Q_2 + Q_3$		

4.5 视在功率

单相视在	S_1 S_2 S_3	$S_n = \sqrt{Pn^2 + Qn^2}$
总有功功率	S	$S = S_1 + S_2 + S_3$

4.6 功率因数

相功率因数	PF ₁ PF ₂ PF ₃	傅立叶叶变换求 cos Φ _i 和 sin Φ _i	PF 的正负号
总功率因数	PF	PF= P/S	=P×Q 的正负号

由能 4.7

电配			
有功电能	+Wh -Wh	Wh= $\Sigma(P \times t)$	
无功电能	+Qh -Qh	$Qh=\Sigma(Q\times t)$	t × 1ms
频率			

4.8 频率

频率	F	F=1/1	Г		分辨率为 0.8uS

五. 操作指南

1.盘面布局

2. 键盘定义

退出本菜单层面、返回选择菜单的上一级菜单层面,并记录 保存所选定的内容

在本菜单层,向上移至选择菜单相邻的另一个项目或键入数 值时作为递增的功能

移至选择菜单的下层或键入数值时作为递减的功能

<mark>移</mark>至选择菜单的下一级菜单层面或键入数值时作为移动光标 位置的功能

3. 显示符号定义

泊	松山口		早 1 ¹ 1 ¹	
	线电压	V_{12} V_{23} V_{31}		
电压		V_1 V_2 V_3	V kV	
	│ 半均线电压 │	Ve		
	半均相电压	Ve ₀		
电流	相电流及零序电流	I_1 I_2 I_3 I_0	A kA	
	│平均电流	Ie		
有功功率	总有功功率	Р	W kW MW	
	单相有功功率	P_1 P_2 P_3		
无功功率	总无功功率	Q	Var kvar Mvar	
70-71-71- 	单相无功功率	Q_1 Q_2 Q_3		
视在功率	总视在功率	S	VA KVA MVA	
况任幼牛	单相视在功率	$\mathbf{S}_1 \mathbf{S}_2 \mathbf{S}_3$		
右巾由能	正向有功电能 🛛 🗸	+Wh	KWh MWh	
有功电能	负向有功电能	Wh		
工力由此	正向无功电能	+Qh		
九功屯祀	负向无功电能	-Qh	K varn M varn	
市家田粉	平均功率因数	PF	注: PF=P/S	
切 平凶致	单相功率因数	$PF_1 PF_2 PF_3$	注: $PF_X = P_X / S_X$	
频率	频率	F	Hz	

Δ	苙畄
т.	<u></u>

	• I			
É	主菜单		二级子菜单	三级子菜单
			三相四线	
			一相二线	
		测目式体调合	三相三线	
		测重糸统设定	三相三线平衡负载	
			一相三线	
			三相四线亚衡合裁	
	ŀ		二伯四线十周贝敦	料店
			並小画面狭贝的问	
				相电压 (V1, V2, V3, Ve0)
				相电流 (11, 12, 13, 1e)
				线电压 (V12, V23, V31, Ve)
				有功功率(P1, P2, P3, P)
				无功功率(Q1,Q2,Q3,Q)
				视在功率(S1, S2, S3, S)
				功率因素(PF1, PF2, PF3, PF)
			固定显示画面选择	方, 无功由能(+Wh -Wh +Oh -Oh)
		固定显示内容设定	自定显示自由选择	A 相参数 (V1 I1 P1)
				A旧学级(VI, II, II)
				平均值 (Ve, Ie, P)
				有功、尤功、视在(P,Q,S)
				频率、零序电流(F, IO)
				日历
				循环轮显
			检山脉冲选择	有功电能
	编		制山脉冲起并	无功电能
			PT	数值
	程	PI、 CI 变比反正	СТ	数值
	Ī	(密码 2000)		
	模		通讯地址	位置(1-247)
	式		传输速率	300 ~ 19200 BPS
			诵讯诜择	Modbus RTU ₂ Modbus ASCII
		通讯参数设定	数据位	7. 8 bit
			<u> </u>	1 2 bit
			た正位	六 伊 王达逊
				井通天内 OII/OII 数点沿会 0- 50000 ×0.14
		继电器出口参数	过流设定	<u> 秋国以た 0^{~~}399999 へ0.1A</u>
				<u> 進時時間</u> 0~1999 ×0.1s (四共时間) 0 1000 ×0.1
				沐行时 1 0~1999 ×0.1s
			欠压设定	<u> </u>
				<u> 進时时间</u> 0~1999 ×0.1s
				保持时间 0~1999 ×0.1s
				开通关闭 On/Off
	-		断相设宁	数值设定 0~59999 V
			凹凹区化	延时时间 0~1999 ×0.1s
				保持时间 0~1999 ×0.1s
	ľ		年	00~99
			月	01~12
			B	01~31
		时间设定	时 时	00~23
			- 分	00~59
			バ	00.50
	1		M'1/	00~37
				0.6
		古你用些有什	星期	0~6
		电能累加复位	レ 星期 密码	0~6 1000

5. 操作菜单结构

⑧ 说明:(在阅读本章内容之前,请先仔细读懂"说明"所述)

1、为了简化,本文在某些举例中,省去了"编程模式"一环。如果读者按照本文中的"举例"操作,不能更改、设定参数,请先进入"编程模式",通过密码验证后,再按例操作即可。

- 2、为了叙述方便,本文假设 GD2100 的当前状态。
- a. 时间: 2001 年 8 月 28 日星期三上午 8 时 18 分 28 秒
- b. 显示画面:相电压(工作模式)
- c. 测量系统:三相四线
- d. 变比: PT=1;CT=1
- e. 通讯参数:地址码=01; 波特率=1200BPS; 校验码=奇校验
- 3、为了方便阅读,下表对一些使用到的图形予以解释

图形	含义
Bs	任何时候按"Bs/←",都将直接返回属于上一级菜单的相 应画面,并保留该画面所表示的信息,直至工作模式。
	按"Up/↑"一次,将由箭头尾部连接的画面切换到箭头 所指的同一层面的相邻的上一个画面,或者将光标所指 的数值增加1。
	按"Dn/↓"一次,将由箭头尾部连接的画面切换到箭头 所指的同一层面的相邻的下一个画面,或者将光标所指 的数值减小 1。
St	 1、在工作模式的任何一个显示画面,按"St/→"一次,进入主菜单的第一项-"测量系统设定"。 2、在菜单模式中,按"St/→"一次,进入下一级菜单的当前项。 3、在光标模式中,按"St/→"一次,光标向右移一格;如果光标在最后一个有效格,则光标移至最前一个有效格。
	箭头两端相连的两个画面为同一层面的相邻两项。按照 箭头指向,由A画面按"Dn/↓"一次,出来B画面;由 B按"Up/↑"一次也可返回至A。
Bs Bs	箭头两端相连的两个画面为相邻两个上下级菜单层面。 按照箭头指向,由上级菜单 A 画面按"St/→"一次,出 来下一级菜单 B 画面或与 B 同层面的其它项;由 B 或与 B 同层面的其它项按"Bs/←"一次返回至 A。
	箭头两头所指向的画面所处的层面只包含这两个项,因此,按箭头两边所示两个"键"("Up/↑"和"Dn/↓") 中任何一个,都会出现另一个画面。
	因为构图布局的原因,一个画面被分别放置于两个不同 位置,用折线将两个相同的画面联起来。

- 5.1 开机
 - a) 按要求接通辅助电源。
 - b) 开机后系统进入自动效验过程,时间为 30 秒。
 - c) 开机首先显示"开机画面":

e) 出厂时默认最近一次的显示画面为三相四线系统的"相电压"画面;

5.2 主菜单

- 》 在当前显示画面,按"St/→"键一次,进入主菜单的第一项-"测量系统设定"。
- ⑧ 按"Dn/↓"或"Up/↑"键若干次,将按顺序进入主菜单的其它项。
- 飞 在主菜单的任意位置,按"Bs/←"键,可返回"当前显示画面"。
- 5.2.1 菜单结构:
 - a) 中文:

b) ENGLISH:

5.2.2 举例:

🚇 由当前画面进入"时间设定"层面,然后返回当前画面。

診 中文:

🚇 由当前画面进入"PT、CT 变比设定"层面, 然后返回当前画面。

◎ 中文:

5.3 测量系统设定

- 》 按"St/→"进入主菜单的第一项-"测量系统设定"。
- ⑧ 按"St/→"进入该项子菜单层面(二级菜单)的当前项-"一相二线"(如果当前 设定的是其它项,则首先进入的画面会是其它项)。
- 瓷 按 "Dn/↓"或 "Up/↑"若干次,直到欲 "选择项"-"一相二线"、"三相三线"、
 "三相三线平衡负载"、"一相三线"、"三相四线平衡负载"、"三相四线"。
- γ 按 "Bs/←"返回主菜单"测量系统设定"画面,则"选择项" 被保存,设定 完成。
- 涉 按"Bs/←"退出主菜单。
- 5.3.1 菜单结构:

5.4 固定显示内容设定

- 首先进入主菜单,选择"固定显示内容设定"。 6
- ⑧ 按"St/→"进入"固定显示内容设定"的子菜单层(二级菜单);按"Up/↑" 或 "Dn/↓", 直到欲选择项-"换页时间"、"固定显示画面选择"。
- ⑧ 按 "St/→"进入"选择项"的子菜单层(三级菜单);按"Up/↑"或"Dn/↓" 直到欲选择子项;如果该层为数值项,则按"Up/↑"、"Dn/↓"或"St/--/",直 至得到需要的数值。
- ③ 按 "Bs/←"返回"选择项",则新的"选择子项"或"数值"被保存。
- 沙 按 "Bs/←"返回主菜单的"固定显示内容设定";再按 "Bs/←"则退出主菜单。
- 5.4.1 菜单结构 1:
 - ◆ 中文:

& ENGLISH:

5.4.3 菜单结构 3:

♪ 中文:

- 5.4.4 菜单结构 4:
 - 龄 中文:

📖 "换页时间" 由当前的 2 秒更改为 10 秒, 然后返回当前画面。

龄 中文:

🚇 "固定显示画面选择"由当前的"相电压"更改为"日历"。

◎ 中文:

- 5.5 PT、CT 变比设定
 - ◎ 首先进入主菜单,选择"PT、CT变比设定"。
 - ⑧ 按 "St/→"进入 "PT、CT 变比设定"的子菜单层 (二级菜单);按 "Up/↑"或
 "Dn/↓",直到欲选择项-"PT 变比设定"或 "CT 变比设定"。
 - ※ 按 "St/→"进入 "选择项"的子菜单层 (三级菜单); 按 "Up/↑"、"Dn/↓"或
 "St/→",直至得到需要的数值。
 - ☞ 按"Bs/←"返回"选择项",则新的"数值"被保存。
 - 沙 按"Bs/←"返回主菜单的"PT、CT变比设定";再按"Bs/←"则退出主菜单。
- 5.5.1 菜单结构 1:
 - ♦ 中文:

□□ "CT 变比" 由当前的 "1"更改为 "10", 然后返回当前画面。

5.6 编程模式

- GD2100要求先通过"编程模式"的密码验证,进入可编程设定工作模式后,才 能对某些参数进行设定;如果未进入"编程模式",就只能察看各项参数,而不 能更改。
- ⑧ 首先进入主菜单,选择"编程模式"。
- 瓷 按"St/→"进入"编程模式"-"密码"菜单。
- γ 按 "St/→"进入"编程模式"-"密码"-"数值"项;按 "Up/↑"、"Dn/↓"或
 "St/→",直至得到需要的数值(出厂默认为: 2000)。
- ※ 按"St/→"出现"密码正确"进入可编程设定工作模式;再按"St/→"返回主菜
 单-"编程模式",按"Up/↑"或"Dn/↓"选择主菜单的其它项。
- 5.6.1 菜单结构:

۲

5.7 通讯参数设定

- ◎ 首先进入主菜单,选择"通讯参数设定"。
- 岁 按"St/→"进入"通讯参数设定"的子菜单层(二级菜单);按"Up/↑"或"Dn/
 ↓",直到欲选择项-"通讯地址"、"传输速率"、"校验位"、通讯规约选择"、"数据位"、"停止位"。
- 瓷 按 "St/→"进入 "选择项"的子菜单层 (三级菜单);按 "Up/↑"或 "Dn/↓", 直到欲选择子项;如果该层为数值项,则按 "Up/↑"、"Dn/↓"或 "St/→",直 至得到需要的数值。
- ③ 按"Bs/←"返回"选择项",则新的"选择子项"或"数值"被保存。
- 沙 按"Bs/←"返回主菜单的"通讯参数设定";再按"Bs/←"则退出主菜单。
- 5.7.1 菜单结构 1:
 - ◆ 中文:

回二级子菜单。

5.7.2 菜单结构 2:

◆ 中文:

5.7.3 菜单结构 3:

龄 中文:

□□ "通讯地址" 由当前的 "000" 更改为 "001", 然后返回当前画面。

◎ 中文:

□□ "通讯速率" 由当前的"1200"更改为"2400", 然后返回当前画面。

🚇 "校验位" 由当前的"奇校验"更改为"偶校验", 然后返回当前画面。

◆ 中文:

□□ "通讯规约选择" 由当前的 "ASCII" 更改为 "RTU", 然后返回当前画面。

♪ 中文:

□□ "数据位选择" 由当前的 "8 bits" 更改为 "7 bits", 然后返回当前画面。

◎ 中文:

□□ "停止位选择" 由当前的 "2 bits" 更改为 "1 bit", 然后返回当前画面。

診 中文:

5.8 时间设定

- ♦ 首先进入主菜单,选择"时间设定"。
- 岁 按 "St/→"进入"时间设定"的子菜单层 (二级菜单);按 "Up/↑"或 "Dn/
 ↓ ",直到欲选择项-"年"、"月"、"时"、"分"、"秒"、"星期"。
- 瓷 按 "St/→"进入 "选择项"的子菜单层 (三级菜单); 按 "Up/↑"、"Dn/↓"或 "St/→", 直至得到需要的数值。
- ③ 按"Bs/←"返回"选择项",则新的时间"数值"被保存。
- 沙 按"Bs/←"返回主菜单的"时间设定";再按"Bs/←"则退出主菜单。
- 5.8.1 菜单结构 1:

◎ 中文:

龄 中文:

- 5.8.4 菜单结构 4:"时间设定"-"日"
 - ◎ 中文:

- 5.8.5 菜单结构 5:"时间设定"-"时"
 - ◎ 中文:

5.8.6 菜单结构 6:"时间设定"-"分"

龄 中文:

5.8.7 菜单结构 7:"时间设定"-"秒"

◎ 中文:

5.8.8 菜单结构 8:"时间设定"-"星期"

- □ 时间由当前的时间: "2001 年 8 月 28 日星期三上午 8 时 18 分 28 秒"更改为"2002 年 9 月 29 日星期四 18 时 19 分 20 秒", 然后返回当前画面。
- 免费服务热线: 4008-1717-18

ℰ ENGLISH:

5.9 电能累加复位

- ◎ 首先进入主菜单,选择"电能累加复位"。
- 》 按 "St/→" 进入 "电能累加复位" 的子菜单层 (二级菜单) "密码"。
- 瓷 按 "St/→"进入 "密码"的数值项,按 "Up/↑"、"Dn/↓"或 "St/→",直至得
 到需要的数值(出厂默认为 1000);按 "St/→"会出来 "电能复位"的提示,等
 待 3~5 秒,电能累加计数器被清零。
- ③ 按"St/→"返回主菜单"电能累加复位"。
- 沙 按"Bs/←"则退出主菜单。
- 5.9.1 菜单结构:
 - ◎ 中文:

🚇 假设密码为"1000",将电能复位。 6 中文: Dn St 00000.00 V 测量系统设定 固定显示画面设定 -> 00000.00 V V3 00000.00 V 00000.00 V ¥ Dn 编程模式 通讯参数设定 PT、CT变比设定 ¥ ᡟ ᡟ Dn Dn 最大电能需量设定 时间设定 电能累加复位 ╈ ¥ _ 电能累加复位 密码 电能累加复位 密码 电能累加复位 4 -> 密码 1000 0000 电能累加复位 电能累加复位 电能累加复位 -> -> 密码 密码 密码 1000 1000 1000 电能累加复位 电能累加复位 电能累加复位 -> 密码 密码 密码 密码正确 密码正确 密码正确 0000000000 123456789 Bs 电能累加复位 电能累加复位 00000.00 V V2 00000.00 V V2 00000.00 V V3 00000.00 V Ve 00000.00 V --密码 ANN S

- 5.10 继电器出口参数
 - ◎ 首先进入主菜单,选择"继电器出口参数"。
 - ⑧ 按"St/→"进入"继电器出口参数"的子菜单层(二级菜单);按"Up/↑"或
 "Dn/↓",直到欲选择项-"过流设定"、"欠压设定"、"断相设定"。
 - 签 按 "St/→"进入"选择项"的子菜单层(三级菜单);按 "Up/↑"或 "Dn/↓", 直到欲选择子项-"出口使能"、"数值设定"、"出口保持时间"、"出口延时时间" (通过"出口使能"设定可以选择是否打开继电器出口功能);
 - γ 按 "St/→"进入"选择子项"的子层菜单(四级菜单);按 "Up/↑"或 "Dn/↓", 直到欲选择内容或数值。按 "Bs/←"返回"选择子项",则新的选择内容或数 值被保存。
 - 🖐 按"Bs/←", 直至"选择项"、"继电器出口参数"、退出主菜单。
- 5.10.1 菜单结构:
 - ♦ 中文:

ℰ ENGLISH:

龄 中文:

□ "过流设定"的"数值设定" 由"50748"更改为"12345"(即过流值由 2074.8A
 更改为 1234.5A)。

♪ 中文:

\square "欠压设定"的"数值设定" 由 " $1 \vee 7$ 更改为 " $10 \vee 7$ (断相设定与此相似)。

第 72 页 共 105 页

延时时间由 184.9S 更改为 32.1S)。

6

中文:

ENGLISH:

5.12 语言(LANGUAGE)

- 首先进入主菜单,选择"语言(LANGUAGE)"。 6
- H 按 "St/→" 进入 "语言 (LANGUAGE)" 的子菜单层 (二级菜单); 按 "Up/↑" 或 "Dn/↓", 直到欲选择项-"中文 (CHINESE)"、"英文 (ENGLISH)"。
- 卷 按"Bs/←"返回主菜单的"语言(LANGUAGE)",则新的"选择子项"被保 存。
- ③ 再按"Bs/←"则退出主菜单。
- ♥ 所有画面的语言界面环境被更新。
- 5.12.1 菜单结构:
 - ♦ 中文:

🚇 由当前的语言环境切换到另一种语言环境。

◎ 中文:

- 5.13 工作模式下的快捷方式
 - ✤ 为了方便用户使用,GD2100 设有快捷方式。
 - ⑧ 快捷方式包括 13 个显示画面。
 - 卷 在工作模式的任何一个当前画面,按"Up/↑"或"Dn/↓"即可直接切换到下一个显示画面。
 - 在工作模式的任何一个当前画面,按"Bs/←"画面刷新(外界干扰严重导致花 屏,可用此刷新,不改变当前画面)。
- 5.13.1 快捷方式结构:

ENGLISH:

🚇 由当前的"相电压"画面快速切换到"平均值"画面。

◎ 中文:

六、接线与安装

1. 接线

GD2100 以其完善的设计思路,保证每个测量通道单独在使用时完全一致、对称。 使用更方便更灵活、具有多种接线方式,适用于多种负载形式。

注意: 1、接线时,电压输入回路(包括电源)必须在每条线路上串联适当的保险。

2、电流输入回路的阻抗尽量小。在 CT 方式下,主回路处于工作带电状态时,绝 对禁止将 CT 二次侧(即电流输入回路)开路。

- 1.1. 一相二线负载
- 1.1.1. 无 PT

- 1.2. 三相三线:
- 1.2.1. 无 PT

1.3. 三相三线平衡负载:

1.3.1. 无 PT

第82页共105页

1.4. 三相四线:

1.5. 三相四线平衡负载:

1.5.1. 无 PT

- 1.6. 一相三线
- 1.6.1. 无 PT

- 2. 安装与维护
- 2.1. 精度

精度漂移为每年≯0.2%。精度校验时间间隔周期由用户的精度要求决定。有关精度 校验请与本公司联系。

2.2. 现场安装

仪表发生故障一般采用整机更换的方法,但在初次安装时应作好以下工作,以保证 维护尽可能方便。

- 1. 应提供一个 CT 短接盒,这样使 GD2100 的电流输入不连接时,不会使 CT 回路开路,短接盒接线应使保护继电器的功能不受影响。
- 2. GD2100 必须牢固安装,以防止震动导致电气安全事故。
- 3. 工作电源: AC 85~265V, 50HZ; DC 85~330V 或 DC 18~30V。
- 4. 电气连接线要求:电流输入线用 2.5 mm²多股铜线,电压输入线、电源线用 1.5 mm²多股铜线,RS-485 通讯用 1.0 mm²屏蔽双绞线。
- 2.3. 安装环境
 - 1. 仪表应尽量安装在干燥、通风良好并远离热源和强(电)磁场的地方。
 - 2. 环境温度为:0℃~50℃。
- 3. PT 和 CT 的选择

PT 选择: GD2100 可直接连接 57/100、100/173、220/381、240/415、227/480 的 三相四线或三相三线星型系统或 347/600V 三相四线星型系统。这些输入也可采用次级 为 100V 的 PT。如:系统电压超过 347/600V,则必须用 PT。PT 用于将系统 L-N(Y 形) 或 L-L(A形) 电压降至 100V 满刻度范围,PT 按以下方式选择:

 PT 初级额定值=V_#(或最接近较高标准值的值) PT 次级额定值=100V
 2、三角形(Δ): PT 初级额定值=V_± PT 次级额定值=100V

PT 质量直接影响系统精度。PT 必须有良好的线性和相间关系才能保证电压、有功和功率因数(PF)的读数的准确性。

CT 选择: CT 次级额定值由 GD2100 的电流输入选项决定,标准值为 5A。

4. PT 和 CT 的连接

输入电流、电压的相序、极性对装置的正确操作是重要的,引入 PT 的各相电压, 将由短路器保险丝保护,如果 PT 的额定功率超过 25W,则次级要加保险丝。

在 CT 初级的激励下,CT 次级能产生致命电压和电流。因此对装置安装和操作时, 需采取安全预防措施(去掉 CT 保险)。CT 应通过短接端子或测试端子连到仪表,以便 于 CT 的安全连接和断开。

当 CT 次级开路时,在初级激励下,产生致命电压和电流。因此对装置安装和操作时,需采取安全预防措施(如短接 CT 初级等)。

七、通讯连接

GD2100 的 RS-485 通讯口使用特征阻抗为 120 Ω 的屏蔽双绞线连接。即使有的仪表 不需远方通信,但由于诊断、测试、软件更新、参数更新等均可通过网络来实现。因此 为使用方便也应将它们连接到 RS485 网络上。RS-232C 对通讯电缆没有严格要求,标准 通讯距离是 15 米。GD2100 的 RS-485/RS-232C 通讯口在同一时间只能使用其中之

1. 网络布局:

GD2100 与上位机连接、组成局域网时,要考虑整个网络的布局。诸如:通讯电缆的长度、走向、上位机的位置、网络末端的匹配电阻、通讯转接器、网络可扩展性、网络覆盖范围、环境的电磁干扰情况等因素,都要综合考虑。

2. 连接到计算机:

一般,在实验室单机通讯比较简单,因为距离较近、电磁环境较好,所以不必 考虑过多因素,甚至在找不到双绞线时可以随便找两条长度合适的导线临时代替。 但在工程上,应严格按照要求施工,以免日后造成麻烦。

上位机可以是电脑(PC)、PLC、数据采集器、RTU等,本章均以PC机为例, 其它类推。

PC 机一般没有 RS-485 接口,但都有 RS-232C 串行接口,因此要与 GD2100 的 RS-485 接口连接,就需要一个转换装置,这里推荐使用厂家配套的"RS232C/RS485 转接器",可将 RS232C 串行接口直接转换成 RS-485 接口,再与 GD2100 相连。若 测试单台 GD2100,也可直接使用 GD2100 的 RS-232C 接口和 PC 机相连,此时可 不用 RS232C/RS485 转接器。

要在与上位机连接的电缆屏蔽层的一端有效接地(保护地:大地、屏柜、机箱等),电缆屏蔽层的另一端通过一电容再接地,以避免屏蔽层的天线效应。RS-485标准传输距离是 1200米,在传输线的(A+,B-)两端各接 120Ω的特征阻抗电阻,以减少或消除反射于抗。GD2100设有保护接地端,需要时可以接大地。如果有金属屏柜、箱盒,应尽量安装在其内部,这样效果会更好。

注意:

进行 RS-485 电缆连接时,尽量使用双色双绞线,所有的"+"端接同一种颜色,"-" 端接另一种颜色。 2.1. 单机通讯连接:

PC 机与单台 GD2100 通讯。将 RS232C/RS485 转接器的 RS232 端直接插入 PC 机的串行口座, RS-485 端接长度不超过 1200 米的双绞线屏蔽电缆, 双绞线另一端 接 GD2100, 然后并接 120 欧姆 1/4W 电阻。

2.2. 多机通讯

PC 机与多台 GD2100 通讯,有多种连接方式,如:线型、环形、星形等,但是不要接成"T"形。

2.2.1. 线型连接:

线型连接,是将多台 GD2100 按照顺序一个接一个地接入网络。距离主机,一 台比一台远。适合测量点分布较为集中、未来有扩展需要的情况。

2.2.2. 环形连接:

环形连接,将多台 GD2100 用电缆连接成闭合环形,然后从一点接到 PC。主机 从两个方向与子机连接,适合子机分布相对集中、可靠性要求高的情况。

2.2.3. 星形连接:

星形连接,将多台 GD2100 用电缆连接成星形(放射线状),然后从中心点接到 PC。主机从两个方向与子机连接,适合子机分布范围相对较分散较复杂较广、未来 可扩展性较好的情况。

八、 通讯规约

1. 引言

GD2100 通讯规约详细描述了本机串行口通讯的读、写命令格式及内部信息数据的 定义,以便第三方开发使用。

1.1. PLC ModBus 兼容性:

ModBus 通讯规约允许 GD2100 智能表与施耐德、西门子、AB、GE、Modicon 等多 个国际著名品牌的可编程顺序控制器 (PLC)、RTU、SCADA 系统、DCS 或第三方具有 ModBus 兼容的监控系统之间进行信息和数据的有效传递。有了 GD2100 智能表,就只 要简单的增加一套基于 PC (或工控机)的中央通讯主控显示软件 (如:组态王、Intouch、 FIX、synall 等)就可建立一套监控系统。

1.2. 广泛的通讯集成:

GD2100 智能表提供与 Modicon 系统相兼容的 ModBus 通讯规约,这个通讯规约被 广泛作为系统集成的标准。兼容 RS-485/RS-232C 接口的可编程逻辑控制器 ModBus 通 讯规约允许信息和数据在 GD2100 智能表与 Modicon 可编程逻辑控制器 (PLC), RTU、 SCADA 系统、DCS 系统和另外兼容 ModBus 通讯规约的系统之间进行有效传递。

2. ModBus 基本规则:

- 2.1. 所有 RS-485 通讯回路都应遵照主/从方式。依照这种方式,数据可以在一个主站(如: PC 机)和 32 个子站(如: GD2100)之间传递。
- 2.2. 主站初始化和控制在 RS-485 通讯回路上传递的所有信息。
- 2.3. 任何一次通讯都不能从子站开始。
- 2.4. 在 RS-485 回路上的所有通讯都以"信息帧"方式传递。
- 2.5. 如果主站或子站接收到含有未知命令的信息帧,则不予以响应。

"信息帧"就是一个由数据帧(每一个字节为一个数据帧)构成的字符串(最多 255 个字节),是由信息头和发送的编码数据构成标准的异步串行数据,该通讯方式也与 RTU 通 讯规约相兼容。

3. 数据帧格式:

通讯传输为异步方式,并以字节(数据帧)为单位。在主站和子站之间传递的每一 个数据帧都是11位(Modbus RTU)或10位(Modbus ASCII)的串行数据流。

数据帧格式:

位(bit)流	Modbus RTU	Modbus ASCII	
起始位	1位	1位	
数据位	8位	7位	
奇偶校验位	1 位: 有奇偶校验位; 无: 无奇偶校验位	1 位: 有奇偶校验位; 无: 无奇偶校验位	
停止位	1 位: 有奇偶校验位; 2 位: 无奇偶校验位	1 位: 有奇偶校验位; 2 位: 无奇偶校验位	

有校验位的时序图(Modbus RTU):

4. GD2100 通讯规约:

当通讯命令发送至仪表时,符合相应的地址码的设备接收通讯命令,读取信息,如 果没有出错,则执行相应的任务;然后把执行结果返送给发送者。返送的信息中包括地 址码、执行动作的功能码、执行动作后的数据以及错误校验码(CRC 或 LRC)。如果出 错就不发送任何信息。

4.1. 信息帧格式:

Modbus RTU

START	ADD	CS	DATA	CRC	END
初始结构	地址码	功能码	数据区	错误校验	结束结构
延时(相当于4	1 字节	1 字节	N 字节	2 字节(CRC)	延时(相当于4
个字节的时间)	8位	8位	N×8位	16位	个字节的时间)
Modbus ASC	П			N	
START	ADD	CS	DATA	LRC	END
初始结构	地址码	功能码	数据区	错误校验	结束结构
1 字符 :	2 字符	2 字符	N 字符	2 字符	2 字符 CRLF

4.1.1. 地址码 (ADD):

地址码为每次通讯传送的信息帧中的第一个数据帧(8位),从1到247。这个字节 表明由用户设定地址码的子机将接收由主机发送来的信息。并且每个子机都有唯一的地 址码,并且响应回送均以各自的地址码开始。主机发送的地址码表明将发送到的子机地 址,而子机发送的地址码表明回送的子机地址。

4.1.2. 功能码 (CS):

功能码是每次通讯传送的信息帧中的第二个数据帧。ModBus 通讯规约定义功能码 为1~127 (01H~7FH)。GD2100 利用其中的一部分功能码。作为主机请求发送,通过功 能码告诉子机执行什么动作。作为子机响应,子机发送的功能码与主机发送来的功能码 一样,并表明子机已响应主机进行操作。如果子机发送的功能码的最高位是1(功能码 >127),则表明子机没有响应或出错。 下表列出 GD2100 部分功能码所具体的含义及操作。

MODBUS 部分功能码

功能码	定义	操作
01H	读开关量输出的状态	读取一个或多个开关量输出的状态
02H	读开关量输入的状态	读取一个或多个开关量输入的状态
03H	读寄存器	读取一个或多个寄存器的数据
05H	设定开关量输出的状态	设定出口继电器的状态(吸合或断开)
06H	写单个寄存器	把一个 16 位二进制数写入单个寄存器
10H	写多个连续寄存器	把多个 16 位二进制数写入多个寄存器

1、01, 读开关量输出的状态

GD2100 智能表采用 ModBus 通讯规约,利用通讯命令,可以读取或设定开关 量的状态, 读取或设定寄存器的值。

功能码 01H 读开关量输出的状态,即继电器出口的状态。0 表示没出口,1 表示已出口。继电器出口时常开接点导通,常闭接点断开;而继电器未出口时常开接点断开,常闭接点导通。

2、02, 读开关量输入(遥信)的状态

功能码 02H 读开关量输入的状态,即 6 路开关量的状态。0 表示表示相应的空接点没接通,1 表示相应的空接点接通。

3、03,读寄存器:

功能码 03H 映射的数据区的寄存器值都是 16 位 (2 字节)。从 GD2100 读取的寄存器值都是 2 字节,一次最多可读取寄存器数是 125。由于一些可编程控制器不用功能码 03, 所以功能码 03 被用作读取点和返回值。

子机响应的命令格式是子机地址、功能码、数据区及 CRC/LRC 码。数据区的数据 都是每 2 个字节为一组的双字节数,且高字节在前。

4、05,设定开关量输出(遥控)的状态

功能码 05H 用来设定开关量输出的状态,即使某路继电器吸合或断开。

5、06, 写单个寄存器:

主机利用这条命令把单点数据保存到GD2100系列数字式多功能电力测控仪的存储器。子机也用这个功能码向主机返送信息。

6、10, 写多个点连续寄存器:

主机利用这条命令把多点数据保存到GD2100系列数字式多功能电力测控仪的存储

器。Modbus 通讯规约中的寄存器指的是 16 位(即 2 字节),并且高位在前。这样 GD2100 系列数字式多功能电力测控仪的点都是二字节。用一条命令保存的最大点数取决于子 机。因为 Modbus 通讯规约允许最多保存 60 个寄存器,这样 GD2100 系列数字式多功能 电力测控仪允许一次最多可保存 60 个寄存器。GD2100 系列数字式多功能电力测控仪的 命令格式是子机地址、功能码、数据区及 CRC/LRC 码。

4.1.3. 数据区 (DATA):

数据区随功能码不同而不同。由主机发送的读命令(03H)信息帧的数据区与子机 应答信息帧的数据区是不同的,由主机发送的写命令(06H、10H)信息帧的数据区与 子机应答信息帧的数据区则完全相同。数据区包含需要子机执行什么动作或由子机采集 的需要回送的信息。这些信息可以是数值、参考地址等等。例如,功能码 03H 告诉子机 读取寄存器的数值,则数据区必须包含要读取寄存器的起始地址及读取长度(寄存器个 数)。

4.1.4. 错误校验码 (CRC/LRC):

主机或子机可用校验码进行判别接收信息是否出错。有时,由于电子噪声或其他一些干扰,信息在传输过程中会发生细微的变化,错误校验码保证了主机或子机对在传送 过程中出错的信息不起作用。这样增加了系统的安全和效率。错误校验码采用 CRC-16 或 LRC 校验方法。

注意:

信息帧的格式都是相同的:地址码、功能码、数据区和校验码。

4.2. 错误校验

MODBUS-RTU 使用的冗余循环校验码(CRC)包含 2 个字节, 即 16 位二进制。CRC 码由发送端计算, 放置于发送信息的尾部。接收端的设备再重新计算接收到信息的 CRC 码, 比较计算得到的 CRC 码是否与接收到的相符, 如果二者不相符, 则表明出错。

CRC 码的计算方法是,先预置 16 位寄存器全为 1。再逐渐把每 8 位数据信息进行处理。在进行 CRC 码计算时只用 8 位数据位参与 CRC 码计算;起始位、停止位、(如有奇偶校验位的话也包括)奇偶校验位,都不参与 CRC 码计算。

在计算 CRC 码时,8 位数据与寄存器的数据相<u>异或</u>,得到的结果<u>向低位移一位</u>,用 0 填补最高位。再检查最低位,如果最低位为 1,把寄存器的内容与预置数相异或,如 果最低位为 0,不进行异或运算。 这个过程一直<u>重复 8 次</u>。第 8 次移位后,下一个 8 位再与现在寄存器的内容相异或, 这个过程与以上一样重复 8 次。当所有的数据信息处理完后,最后寄存器的内容即为 CRC 码值。

4.3. CRC-16 码的计算步骤为:

- 1、置16位寄存器为十六进制FFFF(即全为1)。称此寄存器为CRC寄存器。
- 2、把一个 8 位数据与 16 位 CRC 寄存器的低位相异或,把结果放于 CRC 寄存器。
- 3、把寄存器的内容<u>右移一位(朝低位)</u>,用0填补最高位,检查最低位(移出位)。
- 4、如果最低位为0:重复第3步(再次移位)。

如果最低位为 1: CRC 寄存器与多项式 A001(1010 0000 0000 0001)进行异或。

5、重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理。

- 6、重复步骤2到步骤5,进行下一个8位的处理。
- 7、最后得到的 CRC 寄存器即为 CRC 码,低字节在前,高字节在后。

4.4. LRC 校验码的计算

MODBUS-ASCII 用的是 LRC 校验。除去开始标志字符':'后,其余字节数据 相加然后取反即为 LRC。

注意:

在准备发送信息帧时,数据未转换成 ASCII 码之前的字节数据相加后取反,所得之 LRC 同样要转换成两字节的 ASCII 码。接收信息帧时,要将两字节的 ASCII 码转换成 一字节的数据字节,再相加求和并取反,再将接收到的信息帧尾部两字节 ASCII 表示的 LRC 转换为一字节(8bit) LRC 码,然后再进行比较。

- 4.5. 信息帧<mark>格式举</mark>例
- 4.5.1. 功能码 01: 读开关量输出状态

	主机发送	字节数	举 例(16进制)
	子机地址	1	01 送至子机 01
	功能码	1	01 读开关量输出状态
	±⊐ #ム+u +ıL	2	
起始地址	2	00 起始地址为 0000	
		2	
	误取 个致	2	03 读取 3 个12(Bit)
	CRC 14	2	0B 田王机计昇待到的 CRC 码
		1	
	子机响应	字节数	举 例(16进制)

免费服务热线: 4008-1717-18

GD2100 智能电力测控仪使用手册

子机地址	1	01	送至子机 01
功能码	1	01	读开关量输出状态
读取字节数	1	01	1 字节
线圈状态 (开关量输出)	1	00	三路均没出口
CRC 码	2	51 88	由子机计算得到的 CRC 码

4.5.2. 功能码 02: 读开关量输入状态

主机发送	字节数	举 例 (16 进制)
子机地址	1	01 送至子机 01
功能码	1	02 读开关量输入状态
±⊐ <i>+</i> 4 +4	2	00 ===================================
起炉地址	2	00 起始近为0000
; 古亚/六粉	2	
医 以 知 知 知	2	06 英联 6 1 1 (Bit)
	2	F8 中文机计符组列的 CDC 环
	2	08 田土机计算得到的 CRC 码

子机响应	字节数	举 例(16 进制)	
子机地址	1	01 送至子机 01	
功能码	1	02 读取寄存器	
读取字节数	1	01 1字节	
开关量输入 状态		01 第一路接通,其余未接通	
CRC 码	2	60 48 由子机计算得到的 CRC 码	

4.5.3. 功能码 03:

子机地址为01,起始地址0034的3个寄存器。

此例中寄存器数据地址为:

地 址	数据(16进制)
0034	1388
0036	B6C9
0038	209B

主机发送	字节数	举	例(16 进制)
------	-----	---	----------

免费服务热线: 4008-1717-18

GD2100 智能电力测控仪使用手册

子机地址 1 01 送至子机 01 功能码 1 03 读取寄存器 起始地址 2 34 起始地址为 0034 读取个数 2 00 (读取个数) 2 00 (公田の) 2 00 (公田の) 2 00 (公田の) 2 00 (公田の) 2 03 (公田の) 2 04 (公田の) 2 03 (公田の) 2 10 (公田の) 3 (公田の) 1 03 (公田京市) 1 03 (公田京市) 1 06 3 个寄存器 (会取字市数 1 06 3 个寄存器 (公田京市) 1 1				
功能码103读取寄存器起始地址234起始地址为 00343434超始地址为 00343400读取 3 个寄存器(共 6 字节)374405CRC 码24405由主机计算得到的 CRC 码子机响应字节数举 例 (16 进制)子机地址101达至子机 01近取寄存器功能码103读取字节数1063 个寄存器 (共 6 字节)寄存器数据 1213地址为 0034 内的内容寄存器数据 2220地址为 0036 内的内容寄存器数据 322000日子机计算得到的 CRC 码000日子机计算得到的 CRC 码14041505日子机计算得到的 CRC 码160417051810190510051005110612131310141015101613171418141915191619161910191010101010101010101010101010101110121013101410151016101710 </td <td>子机地址</td> <td>1</td> <td>01</td> <td>送至子机 01</td>	子机地址	1	01	送至子机 01
起始地址 2 00 34 起始地址为 0034 读取个数 2 00 03 读取 3 个寄存器(共 6 字节) CRC 码 2 44 05 由主机计算得到的 CRC 码 <u>子机响应</u> 字节数 举 例 (16 进制) 子机地址 1 01 送至子机 01 功能码 1 03 读取寄存器 读取字节数 1 06 3 个寄存器 (共 6 字节) 寄存器数据 1 2 13 地址为 0034 内的内容 寄存器数据 2 2 86 地址为 0036 内的内容 寄存器数据 3 2 20 地址为 0038 内的内容 寄存器数据 3 2 6D 由子机计算得到的 CRC 码 CRC 码 2 6D 由子机计算得到的 CRC 码	功能码	1	03	读取寄存器
起始地址 2 34 起始地址为 0034 读取个数 2 00 读取 3 个寄存器(共 6 字节) CRC 码 2 44 由主机计算得到的 CRC 码 2 05 由主机计算得到的 CRC 码 7机响应 字节数 举 例 (16 进制) 子机地址 1 01 送至子机 01 功能码 1 03 读取寄存器 读取字节数 1 06 3 个寄存器 (共 6 字节) 寄存器数据 1 2 13 地址为 0034 内的内容 寄存器数据 2 2 86	+7+4-14-14		00	
读取个数200 03 44 05读取 3 个寄存器(共 6 字节) 由主机计算得到的 CRC 码CRC 码244 05由主机计算得到的 CRC 码子机响应字节数举 例 (16 进制)子机地址101送至子机 01 功能码功能码103读取寄存器读取字节数1063 个寄存器 (共 6 字节)寄存器数据 1213 88地址为 0034 内的内容寄存器数据 22B6 C9地址为 0036 内的内容寄存器数据 3220 9B地址为 0038 内的内容CRC 码26D 	起始地址	2	34	起始地址为 0034
读取个数203读取 3 个寄存器(共 6 字节)CRC 码203由主机计算得到的 CRC 码子机响应字节数举 例 (16 进制)子机地址101功能码103读取字节数1063 个寄存器 (共 6 字节)寄存器数据 128地址为 0034 内的内容寄存器数据 22286公20地址为 0036 内的内容寄存器数据 3220地址为 0038 内的内容合D日子机计算得到的 CRC 码26DD4日子机计算得到的 CRC 码		_	00	
CRC 码 2 44 05 由主机计算得到的 CRC 码 子机响应 字节数 举 例 (16 进制) 子机地址 1 01 送至子机 01 功能码 1 03 读取寄存器 读取字节数 1 06 3 个寄存器 (共 6 字节) 寄存器数据 1 2 13 地址为 0034 内的内容 寄存器数据 2 2 B6 20 寄存器数据 3 2 20 地址为 0036 内的内容 合D 20 地址为 0038 内的内容 CRC 码 2 6D 日子机计算得到的 CRC 码	读取个数	2	03	读取3个寄存器(共6字节)
CRC 码 2 05 由主机计算得到的 CRC 码 子机响应 字节数 举 例 (16 进制) 子机地址 1 01 送至子机 01 功能码 1 03 读取寄存器 读取字节数 1 06 3 个寄存器 (共 6 字节) 寄存器数据 1 2 13 地址为 0034 内的内容 寄存器数据 2 2 B6 2 寄存器数据 3 2 20 103 寄存器数据 3 2 20 103 合D 03 中子机计算得到的 CRC 码			44	
子机响应 字节数 举 例 (16 进制) 子机地址 1 01 送至子机 01 功能码 1 03 读取寄存器 读取字节数 1 06 3 个寄存器 (共 6 字节) 寄存器数据 1 2 13 地址为 0034 内的内容 寄存器数据 2 2 86 地址为 0036 内的内容 寄存器数据 3 2 20 地址为 0036 内的内容 CPG 20 地址为 0038 内的内容 日子机计算得到的 CRC 码 04 04	CRC 码	2	05	由主机计算得到的 CRC 码
子机响应 字节数 举例(16进制) 子机地址 1 01 送至子机01 功能码 1 03 读取寄存器 读取字节数 1 06 3个寄存器(共6字节) 寄存器数据1 2 13 地址为0034内的内容 寄存器数据2 2 86 20 寄存器数据3 2 20 20 寄存器数据3 2 20 20 合D 04 0038 内的内容 CRC码 2 6D 由子机计算得到的 CRC 码				
子机地址 1 01 送至子机 01 功能码 1 03 读取寄存器 读取字节数 1 06 3 个寄存器 (共 6 字节) 寄存器数据 1 2 13 地址为 0034 内的内容 寄存器数据 2 2 86 11 寄存器数据 3 2 20 11 寄存器数据 3 2 20 11 CRC 码 2 6D 11 04 14 003 11	子机响应	字节数		举 例 (16 进制)
功能码 读取字节数 1 03 读取寄存器 读取字节数 1 06 3 个寄存器(共6字节) 寄存器数据 1 2 13 地址为 0034 内的内容 寄存器数据 2 2 B6	子机地址	1	01	送至子机 01
读取字节数 1 06 3 个寄存器(共6字节) 寄存器数据1 2 13 地址为 0034 内的内容 寄存器数据2 2 B6 地址为 0036 内的内容 寄存器数据3 2 20 地址为 0038 内的内容 客存器数据3 2 20 日本 1000 (1000) CRC码 2 6D 日子机计算得到的 CRC 码	功能码	1	03	读取寄存器
寄存器数据1 2 13 88 地址为 0034 内的内容 寄存器数据2 2 B6 C9 地址为 0036 内的内容 寄存器数据3 2 C9 9B 地址为 0036 内的内容 CRC码 2 6D D4 由子机计算得到的 CRC 码	读取字节数	1	06	3个寄存器(共6字节)
寄存器数据1 2 88 地址为 0034 内的内容 寄存器数据2 2 88 地址为 0036 内的内容 寄存器数据3 2 20 地址为 0036 内的内容 CRC码 2 6D 由子机计算得到的 CRC 码			13	
寄存器数据 2 2 B6 C9 地址为 0036 内的内容 寄存器数据 3 2 20 9B 地址为 0038 内的内容 CRC 码 2 6D D4 由子机计算得到的 CRC 码	奇仔 斋 奴据 1	2	88	地址为 0034 内的内容
寄存器数据 2 2 C9 地址为 0036 内的内容 寄存器数据 3 2 20 地址为 0038 内的内容 SRC码 2 6D 由子机计算得到的 CRC 码			B6	
寄存器数据3 2 20 9B 地址为 0038 内的内容 CRC 码 2 6D D4 由子机计算得到的 CRC 码	寄存器数据 2	2	C9	地址为 0036 内的内容
寄存器数据 3 2 20 地址为 0038 内的内容 9B 6D 6D CRC 码 2 04			20	
CRC 码 2 6D 由子机计算得到的 CRC 码	寄存器数据3	2	9B	地址为 0038 内的内容
CRC 码 2 0D 由子机计算得到的 CRC 码			6D	\sim
	CRC 码	2	D4	一由子机计算得到的 CRC 码

4.5.4. 功能码 05:设定开关量输出状态

主机发送

	主机发送	字节数		举 例(16进制)		
	子机地址	1	01	送至子机 01		
	功能码	1	05	设置开关量输出状态		
			00			
	起知地址		01	起始地址为0001,即另一路		
			FF	出口导通(常开触点接通,		
	山口水心	2	00	常闭触点断开)		
		2	DD	土는바일쓸/미제바 여자 여 편		
	CRC 和与	2	FA	田王机计昇待到的CRC码		
	子机响应	字节数		举 例(16进制)		
	- 子机地址	1	01	送至子机 01		
	功能码	1	05	设置开关量输出状态		
	ᆂᄀᇷᅪᅪᆉᆉ	2	00			
	他知道址	Δ	01	起始地址为 0001,即第二路		
	山口小大	2	FF	出口导通(常开触点接通,		
	山口仏心	Z	00	常闭触点断开)		
		2	DD	由之机计算组列的 여전 전		
	CKC 145	2	FA	田士机订昇侍到的 CRC 码		
4.5.5.	.5.5. 功能码 06: 设定单个寄存器的值					

第 98 页 共 105 页

举

例(16进制)

字节数

GD2100 智能电力测控仪使用手册

子机地址	1	01	发送至子机 01
功能码	1	06	设定单个数据寄存器(2字节)
ᆂᄀᇷᅪᆆᆂᇉ	2	03	
起知地址	Z	0E	起始地址为 050E
沿宁粉捉	2	00	保左的 数据为 00 <i>64</i>
以 足 奴 掂	Z	64	1本1子的致缩入0004
	2	E9	由主机计算得到的 CDC 和
		A6	日工作的异体时的CKC的

子机响应	字节数		举 例 (16 进制)
子机地址	1	01	来自子机 01
功能码	1	06	单点设定
±=====================================	2	03	
起炉地址		0E	起始地址为 050E
促右粉捉	2	00	促左的数据为 0004
休1子奴据	Z	64	保存的数据为 0004
	2	E9	由ス担決管得到的の日の知
CKC 115	Z	A6	田丁们以异特到的 CRC 码

4.5.6. 功能码 10: 设置多个寄存器

主机发送	字节数		─举 例(16进制)
子机地址	1	01	发送至子机 01
功能码	1	10	多点保存
起始地址	2	03 0E	起始地址为 030E
保存数据数	2	00 02	保存2点(共4字节)
字节数	1	04	两个寄存器 4 个字节
保存数据1	2	00 01	数据地址为 030E
保存数据 2	2	00	数据地址为 0310
CRC 码	2	37 13	由主机计算得到的 CRC 码

GD2100 智能电力测控仪使用手册

子机响应	字节数		举 例(16进制)
子机地址	1	01	来自子机 01
功能码	1	10	多点保存
±=====================================	2	03	
此如坦坦	Z	0E	起始地址为 030E
促右粉促粉	2	00	保存った(サイウ共)
1木1子蚁1活蚁	Z	02	体仔 2 品(共 4 子节)
	2	20	由子扣计算得到的 CDC 珂
CKC 115	Z	4F	田丁机II 昇待到的 CRC 码

4.6. 出错处理

03

当 GD2100 系列数字式多功能电力测控仪检测到了 CRC 码出错以外的错误时, 必须向主机回送信息,功能码的最高位置为 1,即子机返送给主机的功能码是在主 机以送的功能码的基础上加 128。以下的这些代码表明有意外的错误发生。

从主机接收到的信息如有 CRC/LRC 错误,则将被 GD2100 系列数字式多功能电力测控仪忽略。

子机返送的错误码的格式如下(CRC 码除外): 地址码: 1字节 功能码: 1字节(最高位为 1) 错误码: 1字节 CRC 码: 2字节

GD2100系列数字式多功能电力测控仪响应回送如下出错命令:

01 非法的功能码。
 接收到的功能码 GD2100 系列数字式多功能电力测控仪不支持。
 02 非法的数据位置。

■指定的数据位置超出 GD2100 系列数字式多功能电力测控仪范围

附录1:数据和地址。

表 1: 功能码 03H 所映射的数据区-基本数据:

	基本数据(Basic)			
地址(Address)	项目(Item)	说明		
0000H	Ua	相电压 Ua		
0002H	Uca	线电压 Uca		
0004H	Ia	A相电流		
0006H				
0008H	Pa	A 相有功功率		
000AH	PFa	A 相功率因数		
000CH	Qa	A 相无功功率		
000EH	Sa	A 相视在功率		
0010H	Ub	相电压 Ub		
0012H	Uab	线电压 Uab		
0014H	Ib	B 相电流		
0016H				
0018H	РЬ	B 相有功功率		
001AH	PFb	B 相功率因数		
001CH	Qb	B 相无功功率		
001EH	Sb	B 相视在功率		
0020H	Uc	相电压 Uc		
0022H	Ubc	线电压 Ubc		
0024H	Ic	C 相电流		
0026H				
0028H	Рс	C 相有功功率		
002AH	PFc	C 相功率因数		
002C	Qc	C 相无功功率		
002EH	Sc	C 相视在功率		
0030H	Ю	零序电流		
0032H	Uav	三相平均线电压		
0034H	Iav	三相平均相电流		
0036H	F	频率		
0038H	Psum	三相有功功率		
003AH	PFav	三相总功率因数		
003CH	Qsum	三相无功功率		
003EH	Ssum	三相视在功率		
0040H	Phase Rotation			

表 2: 功能码 03H 所映射的数据区-电能:

	电能 Energy	
地址(Address)	项目(Item)	说明
0042H	+Wh(L)	正向有功电能累加值低位字
0044H	+Wh(H)	正向有功电能累加值高位字
0046H	-Wh(L)	正向有功电能累加值低位字
0048H	-Wh(H)	正向有功电能累加值高位字
004AH	+Varh(L)	正向无功电能累加值低位字
004CH	+Varh(H)	正向无功电能累加值高位字
004EH	- Varh(L)	负向无功电能累加值低位字
0050H	- Varh(H)	负向无功电能累加值低高字
0052H	Max. demand	最大有功电能正向需求量
0054H	Sec for last reset	最后复位电能需量的时间-秒
0055H	Min for last reset	最后复位电能需量的时间-秒
0056H	Hour for last reset	最后复位电能需量的时间-时
0057H	Date for last reset	最后复位电能需量的时间-日
0058H	Month for last reset	最后复位电能需量的时间-月
0059H	Year for last reset	最后复位电能需量的时间-年

表 3: 功能码 03H 所映射的数据区-时间:

	时间 (Time)	
地址(Address)	项目(Item)	 说明
0110H	Sec	秒
0111H	Min	分
0112H	Hour	时
0113Н	Date	日
0114H	Month	月
0115H	Year	年

表 4:	功能码 03H 所映射的系统参数	(system parameters	attached by fun 03H):
------	------------------	--------------------	-----------------------

参数地址	项目		字节数 Byte	说明	初始状态			
Address	Item		count	Note	Initial			
0300H		ddress	2	0 to 255	1			
000011			_	0:3P4W	-			
				1:1P2W	-			
	被测系统负载	接线方式		2:3P3W				
0302H	Wire mc	de	2	3:3P3W balance	0			
	whe mode		-	4:1P3W				
				5:3P4W balance				
				0:禁止从仪表的面板清除				
	清除最大/	小值		Inhibit clearing from meter				
0304H	Clearing of n	nax/min	2	panel	0			
				1:允许 Allowable				
		择		0: Modbus RTU				
0306H	Protoco		2	1: Modbus ASCII	0			
	110000	51		0:300				
				1:600				
				2:1200	-			
0308H	波特率	<u>x</u>	2	3:2400	3			
000011	Baud ra	ite	_	4.4800				
				5:9600	-			
				6:19200	-			
	由压输入	 古国		0:150V				
030AH	Voltage r	nge	2	1:600V	1			
	voltage fallge			0: WH				
				1:10WH	-			
				2:100WH	-			
030CH	电能单位	位	2	3:KWH	-			
000011	E_Uni	t	_	4:10KWH	-			
				5:100KWH				
				6: MWH	-			
030EH	РТ		4	1 to 64000	1			
0312H	СТ		4	1 to 64000	1			
0316H	序列号 Ser	ial no.	8	ASC 码 ASC CODE				
031EH	最大电能需量	取样时间	2	取样时间: 3~30 分钟	15			
				0. 15 分钟 15 minutes				
0320H	最大电能需量	滑窗时间	2	1. 30 公轴 30 minutes	0			
	トル トックキ	сц.		1: 50 万井 50 minutes				
0322H	· · · · · · · · · · · · · · · · · · ·	盔 1	2		0			
	Keyboard	юск						
0324H	语言		2	0:中文 Chinese	0			
	Langua	ge		1:英文 English				
0326H		过流定值	2	0-5A	5A			
0328H	第一路继电器	出口延时	2	0 – 120s	2s			
032AH		返回时间	2	0 – 120s	10s			
032CH		欠压定值	2	0-600V	200V			
032EH	第二路继电器	出口延时	2	0 – 120s	2s			
0330H		近回时间	2	0 - 120s	100			
0332H		新相制相	2	0 - 600V	50V			
02241			2	0 120-	2			
0334H	│ 弗二疏继电器 │ 出口延时 │ │ ──────────────────────────────────		2	0 - 120s	28			
HOCCU		巡凹时间	2	0 - 1208	108			
03B6H~03FFH	「家保	留						

附录 2:

数据变换: 所有从 GD2100 响应输出的数据都被按一定公式规范成 2 个字节 Rx, 电能除外, 为 4 个 字节。(Date conversion: All response of measured date from GD2100 to be shown by 16-bits (Rx),Except the energy by 32-bits)

NO	项目 Item	公式 Formula	取值范围	符号	说明 Note			
1	电压 Voltage (V)	$U = Rx \times PT \times 0.1$	0~65535	无 Unsigned	Ua Uca	Ub Uab	Uc Ubc	Ue0 Ue
2	电流 Current (A)	I =Rx ×CT ×0.001	0~65535	无 Unsigned	Ia	Ib	Ic	Ie
3	频率 Frequency (Hz)	F =Rx×0.00106813	0~65535	无 Unsigned	F			
4	功率因数 Power Factor	PF =Rx ×0.0001	-10000~10000	有 Signed	PFa +:lag -:lead	PFb ging l ding lo	PFc oad oad	PFs
5	有功功率 Active Power (W)	$P = Rx \times PT \times CT \times Urg \times 0.4$	-32768~32768	有 Signed	Ра	Pb	Pc	Р
6	无功功率 Reactive Power (Q)	$Q = Rx \times PT \times CT \times 0.4$	-32768~32768	有 Signed	Qa	Qb	Qc	Q
7	视在功率 Apparent Power (S)	$S = Rx \times PT \times CT \times 0.4$	0~65535	无 Unsigned	Sa	Sb	Sc	s
8	电能 Energy	Wh = Rx×K (K=电能单位 E_Unit)	0~10 ⁹	无 Unsigned	+Wh	-Wh	+Varh	-Varh
9	电能需求量 Demand	Wh = Rx×K (K=电能单位 E_Unit)	0~65535	无 Unsigned	Max.demand			
10	模拟量电压	$V = Rx \times 0.001$	-10000 ~ +10000	有 Signed	标准配置只有一路模 拟电压量输入,可将 零序电流输入改为第 二路模拟电压量输入			
注R 1.	e-mark: 电能单位 E_Unit:	电能单位请查表 3 Energy	unit. Please refer ta	ble 3				

附录 3: 外形

