Primary MEFs reprogrammed under suspension culture conditions.
尽管干细胞被广泛地用来测试新药,但是研究人员总是很难在体外生产足够多的有活性的干细胞。通常干细胞是在必须经过刮擦的平面上培养的,然后它们必须分化为其他细胞类型以便阻止这些非常重要的细胞死亡。经证实,这是一种没有效率的收集干细胞的方法,因为这种过程不能产生足够多数量的干细胞,而且所需成本较高。
为了解决这种问题,来自加拿大多伦多大学生物材料与生物医学工程研究所的博士后研究员David Fluri和教授Peter Zandstra决定将被称作重编程的干细胞产生过程与生物反应器使用结合起来,其中生物反应器提供稳定的环境条件。通过这种过程,Fluri能够将小鼠细胞重编程为多能性干细胞,然后将诱导它们分化为心肌细胞。
通过将干细胞培养物放置在特定的生物反应器中,这些干细胞就进行悬浮培养,从而消除在表面培养它们时存在的内在问题。
由于这项发现更加适合于干细胞大规模生产过程,Fluri希望它应当有助于缓解干细胞生产的瓶颈问题,从而有助于这些干细胞用于研究和**开发。
不过,Fluri的发现带来的影响还包括:一旦产生干细胞,它们就很容易分化为其他类型的细胞如心肌细胞,但是Fluri的新培养过程有潜力使得这种干细胞生产过程更加**和更加稳定。
相关研究结果于2012年3月25日在线发表在Nature Methods期刊上。
原文摘要:
Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures
We describe derivation of induced pluripotent stem cells (iPSCs) from terminally differentiated mouse cells in serum- and feeder-free stirred suspension cultures. Temporal analysis of global gene expression revealed high correlations between cells reprogrammed in suspension and cells reprogrammed in adhesion-dependent conditions. Suspension culture–reprogrammed iPSCs (SiPSCs) could be differentiated into all three germ layers in vitro and contributed to chimeric embryos in vivo. SiPSC generation allowed for efficient selection of reprogramming factor–expressing cells based on their differential survival and proliferation in suspension culture. Seamless integration of SiPSC reprogramming and directed differentiation enabled scalable production of beating cardiac cells in a continuous single cell– and small aggregate–based process. This method is an important step toward the development of robust PSC generation, expansion and differentiation technology.