HeLa细胞
器官来源: 宫颈
生长状态: 贴壁生长
年限: 31 years *****
运输方式: 冻存运输
ATCC Number: CCL-2™
相关**: 腺癌
数量: 大量
细胞形态: 上皮样
细胞类型: 上皮细胞
是否是肿瘤细胞: 0
物种来源: 人
HeLa细胞Designations: HeLa
Depositors: WF Scherer
Biosafety Level: 2 [Cells contain human papilloma virus ]
Shipped: frozen
Medium & Serum: See Propagation
Growth Properties: adherent
Organism: Homo sapiens
Morphology: epithelial
Source: Organ: cervix
Disease: adenocarcinoma
Cell Type: epithelial
Permits/Forms: In addition to the MTA mentioned above, other ATCC and/or regulatory permits may be required for the transfer of this ATCC material. Anyone purchasing ATCC material is ultimately responsible for obtaining the permits. Please click here for information regarding the specific requirements for shipment to your location.
Applications:HeLa细胞 transfection host
screening for Escherichia coli strains with invasive potential
Virus Susceptibility: Human adenovirus 3
Encephalomyocarditis virus
Human poliovirus 1
Human poliovirus 2
Human poliovirus 3
DNA Profile (STR): Amelogenin: X
CSF1PO: 9,10
D13S317: 12,13.3
D16S539: 9,10
D5S818: 11,12
D7S820: 8,12
THO1: 7
TPOX: 8,12
vWA: 16,18
Cytogenetic Analysis: Modal number = 82; range = 70 to 164.
There is a small telocentric chromosome in 98% of the cells. 100% aneuploidy in 1385 cells examined. Four typical HeLa marker chromosomes have been reported in the literature. HeLa Marker Chromosomes: One copy of Ml, one copy of M2, four-five copies of M3, and two copies of M4 as revealed by G-banding patterns. HeLa细胞M1 is a rearranged long arm and centromere of chromosome 1 and the long arm of chromosome 3. M2 is a combination of short arm of chromosome 3 and long arm of chromosome 5. M3 is an isochromosome of the short arm of chromosome 5. M4 consists of the long arm of chromosome 11 and an arm of chromosome 19.
Isoenzymes: G6PD, A
Age: 31 years *****
Gender: female
Ethnicity: Black
HeLa Markers: Y
Comments: The cells are positive for keratin by immunoperoxidase staining.
HeLa cells have been reported to contain human papilloma virus 18 (HPV-18) sequences.
P53 expression was reported to be low, and normal levels of pRB (retinoblastoma suppressor) were found.
Propagation: ATCC complete growth medium: The base medium for this cell line is ATCC-formulated Eagle's Minimum Essential Medium, Catalog No. 30-2003. To make the complete growth medium, add the following components to the base medium: fetal bovine serum to a final concentration of 10%.
Atmosphere: air, 95%; carbon dioxide (CO2), 5%
Temperature: 37.0°C
Subculturing: Protocol:
Remove and discard culture medium.
HeLa细胞Briefly rinse the cell layer with 0.25% (w/v) Trypsin- 0.53 mM EDTA solution to remove all traces of serum which contains trypsin inhibitor.
Add 2.0 to 3.0 ml of Trypsin-EDTA solution to flask and observe cells under an inverted microscope until cell layer is dispersed (usually within 5 to 15 minutes).
Note: To avoid clumping do not agitate the cells by hitting or shaking the flask while waiting for the cells to detach. Cells that are difficult to detach may be placed at 37�C to facilitate dispersal.
Add 6.0 to 8.0 ml of complete growth medium and aspirate cells by gently pipetting.
Add appropriate aliquots of the cell suspension to new culture vessels.
Incubate cultures at 37�C.
Subcultivation Ratio: A subcultivation ratio of 1:2 to 1:6 is recommended
Medium Renewal: 2 to 3 times per week
Preservation: Freeze medium: Complete growth medium supplemented with 5% (v/v) DMSO
Storage temperature: liquid nitrogen vapor phase
Related Products: Recommended medium (without the additional supplements or serum described under ATCC Medium):ATCC 30-2003
also available as Certified Reference Material, ATCC CRM-CCL-2
derivative:ATCC CCL-2.1
derivative:ATCC CCL-2.2
derivative:ATCC CCL-2.3
References: 21447: American Public Health Association. Compendium of methods for the microbiological examination of foods. 3rd ed.Washington, DC: American Public Health Association; 1992.
21491: AOAC International Invasiveness by Escherichia coli of mammalian cells, microbiological method. Gaithersburg, MD:AOAC International;AOAC "Official Methods of Analysis of the AOAC International" 982.36.
21626: Baldi A, et al. Genomic structure of the human retinoblastoma-related Rb2/p130 gene. Proc. Natl. Acad. Sci. USA 93: 4629-4632, 1996. PubMed: 8643454
22148: Gey GO, et al. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 12: 264-265, 1952.
22263: Chen TR. Re-evaluation of HeLa, HeLa S3, and HEp-2 karyotypes. Cytogenet. Cell Genet. 48: 19-24, 1988. PubMed: 3180844
22766: Boshart M, et al. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J. 3: 1151-1157, 1984. PubMed: 6329740
22767: HeLa细胞Schneider-Gadicke A, Schwarz E. Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO J. 5: 2285-2292, 1986. PubMed: 3023067
22919: Schwarz E, et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314: 111-114, 1985. PubMed: 2983228
22995: Pater MM, Pater A. Human papillomavirus types 16 and 18 sequences in carcinoma cell lines of the cervix. Virology 145: 313-318, 1985. PubMed: 2992153
23180: Yee C, et al. Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. Am. J. Pathol. 119: 361-366, 1985. PubMed: 2990217
23324: Scheffner M, et al. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc. Natl. Acad. Sci. USA 88: 5523-5527, 1991. PubMed: 1648218
25915: Jones HW Jr., et al. George Otto Gey. (1899-1970). The HeLa cell and a reappraisal of its origin. Obstet. Gynecol. 38: 945-949, 1971. PubMed: 4942173
25919: Scherer WF, Hoogasian AF. Preservation at subzero temperatures of mouse fibroblasts (strain L) and human epithelial cells (strain HeLa). Proc. Soc. Exp. Biol. Med. 87: 480-487, 1954. PubMed: 13237281
25921: Scherer WF, et al. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J. Exp. Med. 97: 695-710, 1953. PubMed: 13052828
26623: Fang X, et al. Lysophosphatidylcholine stimulates activator protein 1 and the c-Jun N-terminal kinase activity. J. Biol. Chem. 272: 13683-13689, 1997. PubMed: 9153219
27094: Bruder JT, Kovesdi I. Adenovirus infection stimulates the Raf/MAPK signaling pathway and induces interleukin-8 expression. J. Virol. 71: 398-404, 1997. PubMed: 8985363
27345: Huber M, et al. Tyrosine phosphorylation events during coxsackievirus B3 replication. J. Virol. 71: 595-600, 1997. PubMed: 8985388
27814: Olson JK, et al. Varicella-zoster virus Fc receptor gE glycoprotein: serine/threonine and tyrosine phosphorylation of monomeric and dimeric forms. J. Virol. 71: 110-119, 1997. PubMed: 8985329
27819: Goodrum FD, Ornelles DA. The early region 1B 55-kilodalton oncoprotein of adenovirus relieves growth restrictions imposed on viral replication by the cell cycle. J. Virol. 71: 548-561, 1997. PubMed: 8985383
28301: Loffler S, et al. CD9, a tetraspan transmembrane protein, renders cells susceptible to canine distemper virus. J. Virol. 71: 42-49, 1997. PubMed: 8985321
29988: Hendricks DT, et al. FHIT gene expression in human ovarian, endometrial, and cervical cancer cell lines. Cancer Res. 57: 2112-2115, 1997. PubMed: 9187105
32244: Hoppe HC, et al. Identification of phosphatidylinositol mannoside as a mycobacterial adhesin mediating both direct and opsonic binding to nonphagocytic mammalian cells. Infect. Immun. 65: 3896-3905, 1997. PubMed: 9284169
32252: Rieder G, et al. Role of adherence in Interleukin-8 induction in Helicobacter pylori-associated gastritis. Infect. Immun. 65: 3622-3630, 1997. PubMed: 9284128
32299: St. Geme JW, et al. Characterization of the genetic locus encoding Haemophilus influenzae type b surface fibrils. J. Bacteriol. 178: 6281-6287, 1996. PubMed: 8892830
32348: Mansky LM. The mutation rate of human immunodeficiency virus type 1 is influenced by the vpr gene. Virology 222: 391-400, 1996. PubMed: 8806523
32362: Dobbelstein M, Shenk T. Protection against apoptosis by the vaccinia virus SPI-2 (B13R) gene product. J. Virol. 70: 6479-6485, 1996. PubMed: 8709286
32368: Churchill MJ, et al. The rev-responsive element negatively regulates human immunodeficiency virus type 1 env mRNA expression in primate cells. J. Virol. 70: 5786-5790, 1996. PubMed: 8709194
32373: Goodrum FD, et al. Adenovirus early region 4 34-kilodalton protein directs the nuclear localization of the early region 1B 55-kilodalton protein in primate cells. J. Virol. 70: 6323-6335, 1996. PubMed: 8709260
32396: Kolanus W, et al. alphaLbeta2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1 a cytoplasmic regulatory molecule. Cell 86: 233-242, 1996. PubMed: 8706128
32446: Gan W, Rhoads RE. Internal initiation of translation directed by the 5'-untranslated region of the mRNA for eIF4G, a factor involved in the picornavirus-induced switch from cap-dependent to internal initiation. J. Biol. Chem. 271: 623-626, 1996. PubMed: 8557663
32474: Koumenis C, Giaccia A. Tranformed cells require continuous activity of RNA polymerase II to resist oncogene-induced apoptosis. Mol. Cell. Biol. 17: 7306-7316, 1997. PubMed: 9372962
32475: You M, et al. ch-IAp1, a member of the inhibitor-of-apoptosis protein family, is a mediator of the antiapoptotic activity of the v-Rel oncoprotein. Mol. Cell. Biol. 17: 7328-7341, 1997. PubMed: 9372964
32476: Hess MT, et al. Base pair conformation-dependent excision of benzo{a}pyrene diol epoxide-guanine adducts by human nucleotide excision repair enzymes. Mol. Cell. Biol. 17: 7069-7076, 1997. PubMed: 9372938
32514: Bartz SR, et al. Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control. J. Virol. 70: 2324-2331, 1996. PubMed: 8642659
32519: Roller RJ, et al. Structure and function in the herpes simplex virus 1 RNA-binding protein US11: mapping of the domain required for ribosomal and nucleolar association and RNA binding in vitro. J. Virol. 70: 2842-2851, 1996. PubMed: 8627758
32547: Jang SI, et al. Activator protein 1 activity is involved in the regulation of the cell type-specific expression from the proximal promoter of the human profilaggrin gene. J. Biol. Chem. 271: 24105-24114, 1996. PubMed: 8798649
32558: Anderson SM, et al. Intercellular transfer of a glycoslphosphatidylinositol (GPI)-linked protein: release and uptake of CD4-GPI from recombinant adeno-associated virus-transducted HeLa cells. Proc. Natl. Acad. Sci. USA 93: 5894-5898, 1996. PubMed: 8650189
32566: Dittrich E, et al. A di-leucine motif and an upstream serine in the interleukin-6 (IL-6) signal transducer gp130 mediate ligand-induced endocytosis and down-regulation of the IL-6 receptor. J. Biol. Chem. 271: 5487-5494, 1996. PubMed: 8621406
32568: Lee JH, et al. The proximal promoter of the human transglutaminase 3 gene. J. Biol. Chem. 271: 4561-4568, 1996. PubMed: 8626812
32719: Duus KM, Grose C. Multiple regulatory effects of varicella-zoster virus (VZV) gL on trafficking patterns and fusogenic properties of VZV gH. J. Virol. 70: 8961-8971, 1996. PubMed: 8971025
32723: Lieber A, et al. Recombinant adenoviruses with large deletions geneerated by cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo. J. Virol. 70: 8944-8960, 1996. PubMed: 8971024
32730: Yang C, Compans RW. Analysis of the cell fusion activities of chimeric simian immunodeficiency virus-murine leukemia virus envelope proteins: inhibitory effects of the R peptide. J. Virol. 70: 248-254, 1996. PubMed: