上海沪震实业有限公司
扫一扫,手机逛起来
主营:ELISA试剂盒,人ELISA试剂盒,小鼠ELISA试剂盒,大鼠ELISA试剂盒,重组蛋白,金标试剂盒,**组化试剂盒,标准品,单克隆抗体,多克隆抗体,生化试剂,生物培养基,原代细胞,细胞株,实验室耗材,动物血清等产品
021-60345367
您现在的位置:
企业信息
9
  • 注册时间:2015-11-06
  • 联系人:游艳
  • 电话:021-60345367
  • 联系时,请说明仪表网看到的
  • Email:shhzsw01@163.com
在线询价
产品详情

pVPack-Eco

  • 如果您对该产品感兴趣的话,可以
  • 产品名称:pVPack-Eco
  • 产品型号:
  • 产品展商:HZbscience
  • 产品文档:无相关文档
  • 发布时间:2017-07-27
  • 在线询价
简单介绍
pVPack-Eco的各批次质粒菌株发货前均经过严格的多重验证,如存在质量问题,请在收到产品的三个月内通知我司。收到pVPack-Eco后请短暂离心,取2μl转化至对应感受态中,挑取单克隆重新提取质粒后使用。
产品描述

pVPack-Eco载体基本信息

载体名称: pVPack-Eco
质粒类型: 哺乳动物载体;逆病毒包装载体;双质粒包装系统;信封载体
高拷贝/低拷贝: 高拷贝
克隆方法: 限制性内切酶,多克隆位点
启动子: CMV
载体大小: 6.8kb
5' 测序引物及序列: CMV fwd 5’CGCAAATGGGCGGTAGGCGTG 3’
3' 测序引物及序列: --
载体标签:
载体抗性: Ampicillin
筛选标记: 嘌呤霉素
克隆菌株: DH5α或 HB101
宿主细胞(系): 包装细胞系如293T
备注:
逆病毒包装载体pVPack-Eco是2质粒包装系统的信封质粒与pVPack-GP一起使用,
使用方法见下文。使用范围:大鼠和小鼠。
 
产品目录号: #12371
稳定性: 瞬表达
组成型/诱导型: 组成型
病毒/非病毒: 非病毒

pVPack-Eco载体质粒图谱和多克隆位点信息

pVPack-Eco载体图谱

pVPack-Eco载体简介

pVPack逆病毒包装载体描述 Choice of env-Expressing Vector
In addition to the gag-pol expression vector pVPack-GP, the pVPack vector system offers 4 different env-expressing vectors. Which of those 4 is selected depends on the choice of host cell type; see Table I and Miller (1997).2 The pVPack-Eco vector is the safest vector, providing experiments can be performed in transduced mouse or rat cells; ecotropic virus infects human cells with extremely low efficiency. The amphotropic envelope protein has historically been the protein of choice for infection of human and other mammalian cell lines. More recently the 10A1 envelope protein has been used due to its increased versatility relative to the amphotropic protein. The 10A1 protein recognizes the same cell-surface receptor as the amphotropic envelope protein plus a second receptor, and thus can essentially infect any cell that an amphotropic virus can infect, although in some cases with a higher efficiency. The ecotropic, amphotropic and 10A1 proteins are all natural MMLV variants, and are all relatively labile and thus considered relatively safe compared with other viral systems. The vesicular stomatitis virus G protein (VSV-G) is rapidly becoming the most popular envelope protein. Unlike the other three MMLV-derived envelope proteins which recognize cell surface receptors, VSV-G recognizes a phospholipid that is present on all cell types, and thus can theoretically allow the efficient infection of any mitotic cell.3 Special precautions must be used when working with this vector (see Preprotocol Safety Considerations).

Vector Features
Figures 2 and 3 illustrates the important features of the vectors in the pVPack system. The expression of both the gag-pol elements in the pVPack-GP vector and the envelope elements in the env-expressing vectors are driven by the CMV promoter. Each of these vectors also contains an internal ribosome entry site (IRES) linked to a downstream drug-resistance cassette that enables the selection of stable producer lines. The vector pVPack-GP and the env-expressing vectors employ different resistance cassettes, hisD and puromycin, respectively. Methods for selecting stable producer lines are discussed in Hartman and Mulligan (1988)4 and Wirth and colleagues (1988).5

Notes
 If a compatible MMLV-based retroviral vector is chosen, all three vectors can be maintained simultaneously. Although stable VSV-G-expressing cells lines have been successfully constructed, in general they are of poor quality due to the toxicity of VSV-G. For the production of VSV-G pseudotyped virus, transient transfection rather than selection of stable cell lines is recommended.
The bacterial origin of replication, pUC, and ampicillin resistance cassette are included to permit maintenance and production of the vectors in E. coli.


Choice of Expression Vector
Any MMLV-based retroviral vector for gene delivery and expression can be used with the pVPack vector system to produce high-titer retroviral stocks. The Stratagene pFB and pCFB retroviral vectors and ViraPort retroviral cDNA libraries are compatible with the Stratagene pVPack system. They contain the elements necessary for virion packaging: a bacterial origin of replication and ampicillin-resistance gene from pBR322, an extended MMLV packaging signal (ψ+), and a multiple cloning site (MCS) that is located between the MMLV 5′ and 3′ long terminal repeat sequences (LTRs).

pFB-Neo-LacZ, pFB-hrGFP, and pFB-Luc Control Vectors
The pFB-Neo-LacZ plasmid vector provided with the kit contains a bicistronic transcript; the β-galactosidase gene is expressed from the first open reading frame, and is followed by the neomycin-resistance marker downstream from an IRES. The vector may be used as an expression control, and can also be used to determine viral titer by FACS, in situ staining with X-gal, or G418-resistant colony formation.
Also available for use as a positive control is the vector pFB-hrGFP (Stratagene Catalog #240027), which contains coding sequence for the humanized green fluorescent protein from a novel marine organism. The hrGFP-expressing vector can be used to determine the transfection efficiency of the packaging cell line and to determine viral titer by FACS.
The pFB-Luc control* (also available separately) allows a qualitative assessment of the efficiency with which the target cell type is transduced by retrovirus. Direct comparisons between the cell lines based on luciferase activity should be made with caution however, as differences in luciferase activity may be due to cell type-dependent differences in luciferase expression rather than differences in transduction efficiencies.

pVPack逆病毒包装载体适用范围
逆病毒包装质粒pVPack-Eco使用方法——逆病毒包装与转染方法 
PROTOCOL FOR RETROVIRUS PRODUCTION Prior to production of virus, users should be thoroughly familiar with the suggestions and Web sites described in the section Preprotocol Safety Considerations. All virus work should be performed in a designated virus work area. All cell lines to be used for production of or infection by retrovirus should first be tested for the presence of endogenous retrovirus. See Undesired Production of Replication-Competent Retrovirus above. Although a variety of protocols and cell lines may be successfully used with these vectors, the following protocol for the production of viral supernatants is recommended. This protocol consistently results in the production of viral titers >10colony forming units (cfu)/ml when transducing NIH3T3 cells with a pFB-derived vector. The protocol employs a calcium phosphate precipitation of the vector DNA and is based on the Transfection MBS Mammalian transfection kit, modified according to Pear and colleagues.Although excellent results may be obtained using 293 cells, we recommend the use of the 293 cell derivative 293T, which has been shown to transfect with a significantly greater efficiency. 

Day 1: Preparing for Production of Virus by Transfection 

293T Host Cell Preparation Split 293T cells at 2.5-3.0 × 106 cells per 60-mm tissue culture plate in growth medium 24 hours before the transfection and incubate at 37°C until needed. Note       To achieve optimal titers, it is important that the 293T cells are healthy and growing exponentially. Cells should be passaged at high density, and ideally passaged no more than 20 times (no more than approximately 2 months); it is thus prudent to initially prepare a large number of frozen vials of the cells while they are at a low passage and healthy. Care should be taken to avoid clumping of the cells during passaging and plating for transfection. Plasmid DNA Preparation DNA preparations of high purity should be used for the transfections. 1.  Pipette the following into a clean 1.5-ml microcentrifuge tube; prepare one tube for each transfection to be carried out.     μg an MMLV-based retroviral plasmid containing the gene of interest     μg pVPack-GP (gag-pol-expressing vector)     μg of one of the four env-expressing vectors (pVPack-Eco, pVPack-Ampho, pVPack-VSV-G, pVPack-10A1) 2.  (Optional)Prepare the positive control vector sample by pipetting the following into a clean 1.5-ml microcentrifuge tube.     μg pFB-Neo-LacZ or pFB-hrGFP     μg pVPack-GP (gag-pol-expressing vector)         ♦3 μg of one of the four env-expressing vectors (pVPack-Eco, pVPack-Ampho, pVPack-VSV-G, pVPack-10A1) 3. To each of the tubes containing the mixed vector DNA, add 1 ml 100% (v/v) ethanol and 0.1 × volume 3 M sodium acetate to the DNA mixture; mix by inverting the tube, incubate at -80°C for 30 minutes. Collect the DNA pellet by centrifugation at 12,000 × g for 10 minutes at 4°C. Aspirate and discard the supernatant. Add 1 ml 70% (v/v) ethanol to the tube, vortex briefly, and collect the DNA pellet by centrifugation at 12,000 × g for 5 minutes at 4°C. Remove and discard the supernatant; close the cap of the tube. Store wet pellets at 4°C overnight.
 

Day 2: Transfecting Cells

Note       The procedure on Day 2 will take a minimum of 10 hours to complete. Adding the MBS-Containing Medium to the Cells 1    Inspect the host cells that were split the day before; they should be   approximately 80% confluent. [If cells are significantly less than 80% confluent, viral supernatants may be harvested 72 hours post-transfection rather than 48 hours.] 2    Prepare the MBS-containing medium (see Preparation of Media and Reagents). This must be done immediately prior to the transfection. For each 60-mm tissue culture plate, 4 ml of MBS-containing medium must be prepared. 3    Add 4 ml of MBS-containing medium to each 60-mm plate and return the plates to the 37°C incubator. This must be done 20-30 minutes before the addition of the DNA suspension.    Adding the DNA Suspension to the Cells 1    Remove the microcentrifuge tubes containing the wet DNA pellets (including the pFB-Neo-LacZ or pFB-hrGFP–containing pellet if the control transfection is to be carried out) from storage at 4°C and transfer them to the laminar flow hood. 2    Resuspend each DNA pellet in 450 μl sterile H2O and transfer the liquid to separate 5-ml BD Falcon polystyrene round-bottom tubes. 3    To each resuspended DNA pellet add 50 μl of Solution I and 500 μl Solution II from the Transfection MBS Mammalian Transfection Kit. 4    Gently resuspend any precipitate in the DNA suspension by pipetting the suspension up and down with a pipettor set at 500 μl. The DNA suspension should appear clear to opaque. Allow the DNA suspension to sit at room temperature for 10 minutes. 5    Remove the 60-mm plates to be transfected from the incubator and add the DNA suspension onto the plates in a dropwise fashion, swirling gently to prevent the cells from being lifted from the plate and to distribute the DNA suspension evenly.    Note   From this point on, it should be assumed that infectious virus is present in the supernatant of the transfected cells. Gloves and disposable lab coats should be worn while working with the virus. We recommend that gloved hands be sprayed intermittently with ethanol. When pipetting medium supernatant and transferring plates to and from the laminar flow hood, aerosols should be avoided. All dirty pipets and plasticware should be disposed of as described in the section 6    Return the tissue culture plates to the 37°C incubator. 7    After incubating for 3 hours, remove the medium from the plates and replace it with 4 ml of growth medium supplemented with 25 μM chloroquine. Return the plates to the 37°C incubator. 8    After incubating for an additional 6–7 hours, remove the growth medium containing 25 μM chloroquine and replace with 4 ml growth medium—no chloroquine.
 

Day 3: Preparing for the Transduction 

1   Remove growth medium from 293T plates and replace with 3.0 ml of fresh growth medium. Return the plates to the 37°C incubator.   Note       If virus is to be harvested 72 hours post-transfection rather than 48 hours, steps 2 and 3 should be carried out on Day 4. 2    Split the target cells, seeding 1 × 105 cells per well for 6-well plates and 2 × 104 cells per well for 24-well plates. This seeding density may vary with the cell line; 20–30% confluency is desirable. 3    Return the plates to the 37°C incubator overnight.
 

Day 4: Transducing the Target Cells

Note       If virus is to be harvested 72 hours post-transfection rather than 48 hours, all steps   from the Day 4 section should be performed on Day 5. 1. Remove the virus-producing 293T cells from the incubator. 2. Collect the virus-containing supernatant from the first plate and filter it through a 0.45 μm filter into a sterile 50-ml conical tube.   Note       If desired, the supernatant can be snap frozen on dry ice or liquid nitrogen and stored at -80°C at this stage. WARNING: Freeze-thawing virus one time typically results in a 2-fold loss in titer. Subsequent freeze-thaw cycles result in less than a 2-fold loss per cycle of the remaining infectious virus. 3    Dilute viral supernatants as desired in growth medium.  4    Add DEAE-dextran solution to the diluted viral supernatants to a final concentration of 10 μg/ml (1:1000 dilution of the 10 mg/ml DEAE-dextran stock.   Note       If starting from a frozen supernatant stock, thaw rapidly in a 37°C water bath, minimizing the time the supernatant is at 37°C before the addition of the DEAE-dextran. 5    Remove the plates containing the target cells from the incubator. 6    Remove and discard the medium from the wells of the target cell plates. a)   Add DEAE-dextran plus virus to the wells containing the target cells: b)   1.0 ml per well for 6-well plates and 200 μl per well for 24-well plates. 7    Return the plates to the 37°C incubator for 3 hours. 8    After the 3 hour incubation, add growth medium to the wells: 1.0 ml per well for 6-well  plates and 200 μl per well for 24-well plates.   Note        For expression studies, allow at least two days between target cell infection and cell harvest. 

pVPack-Eco载体序列

hz-2137R Influenza A virus (Duck)  鸭流感病毒抗体
hz-2150R TNF-alpha  肿瘤坏死因子-α抗体
hz-1603R AARS2  丙氨酰tRNA合成酶2抗体
hz-2185R TDRD9/HIG1  缺氧诱导蛋白HIG1抗体
hz-2257R SIRT1/sirtuin 1  沉默调节蛋白1抗体
hz-2321R Spindly/CCDC99  亚砷盐相关蛋白抗体
hz-2354R TBX-5  转录因子Tbx5抗体
hz-0096R AAT/Tryptase  α-1抗胰蛋白酶抗体
hz-1510R AATK  AATK细胞凋亡关联酪氨酸激酶抗体
hz-2451R NMP-22  核基质蛋白22
hz-1229R AATF  拮抗凋亡转录因子抗体
hz-1627R ABCA1/ABC1  腺苷三磷酸结合盒转运体A1抗体
hz-1761R ABCD1/CCL22  嗜酸粒细胞趋化蛋白22抗体
hz-1604R ABCB5  ATP结合蛋白家族5抗体
hz-1224R ABCB6  ATP结合蛋白家族6抗体
hz-1960R ABCF1  ATP结合盒蛋白家族GCN20F家族1抗体
hz-1231R ABCG1  三磷酸腺苷结合盒亚家族G1抗体
hz-0662R ABCG2/CD338  三磷酸腺苷结合转运蛋白G超家族成员2抗体
hz-2812R KAT4  细胞周期基因1蛋白抗体
hz-1727R ABCG4  ABC膜转运蛋白抗体
hz-5013R ABCG5  三磷酸腺苷结合转运蛋白G超家族成员5抗体
hz-5014R ABCG8  三磷酸腺苷结合转运蛋白G超家族成员8抗体
hz-0583R c-Abl/Abl1  非受体酪氨酸激酶c-Abl抗体

关于我们| 易展动态| 易展荣誉| 易展服务| 易家文化| 英才集结号| 社会责任| 联系我们

备案号:粤ICP备11010883号| 公安机关备案号:44040202000312| 版权问题及信息删除: 0756-2183610  QQ: 服务QQ

Copyright?2004-2017  珠海市金信桥网络科技有限公司 版权所有

行业网站百强奖牌 搜索营销*有价值奖 中小企业电子商务**服务商
以上信息由企业自行提供,信息内容的真实性、准确性和合法性由相关企业负责,易展仪表展览网对此不承担任何保证责任。

沪公网安备 31011702004356号