据IDC(互联网数据中心)数据统计,到2020年将有超过500亿的终端与设备联网。未来超过50%的数据需要在网络边缘侧分析、处理与储存。边缘计算正是充分利用物联网终端的嵌入式计算能力,并与云计算结合,通过云端的交互协作,实现系统整体的智能化。
其实在工业内网中,在离工业现场近的地方,融合网络、计算、存储、应用核心能力的开放平台,就近提供边缘智能服务,是满足制造企业数字化转型中提出的快速联接、实时业务、数据优化、应用智能、**保护等方面的关键需求。
有专家认为,“工业4.0”的核心是CPS(信息物理系统),而融合了网络、计算、存储、应用核心能力的边缘计算,显然又是CPS的核心。边缘计算与工业控制系统有密切的关系,具备工业互联网接口的工业控制系统本质上就是一种边缘计算设备,解决工业控制高实时性要求与互联网服务质量的不确定性的矛盾。
例如,目前规模以上冶金企业,信息化已经颇有成效,但缺少的是终端的智能。冶金的物流跟踪是典型的CPS,物理与化学形态经常发生改变,控制过程有一定难度。边缘计算在其中发挥着重要作用,是工业物联网技术的有效补充。
在目前普遍采用的基于PLC、DCS、工控机和工业网络的控制系统中,位于底层、嵌于设备中的计算资源,或多或少都是边缘计算的资源。只是目前这些资源比较纷杂、独立、低效,未能充分实现互联、互通、互操作,未能充分标准化和平台化。当然,这也就难以满足现代应用场景在实时、**、大容量、高速度、自适应计算和通信等方面对它的要求。
边缘计算是小型专家系统
作为边缘计算的具体表现形式,工业CPS在底层通过工业服务适配器,将现场设备封装成web服务;在基础设施层,通过工业无线和工业SDN网络将现场设备以扁平互联的方式联接到工业数据平台中;在数据平台中,根据产线的工艺和工序模型,通过服务组合对现场设备进行动态管理和组合,并与MES等系统对接。工业CPS系统能够支撑生产计划灵活适应产线资源的变化,旧的制造设备快速替换与新设备上线。
一直在做工业互联网平台的东方国信在这一领域中有近十年的经验。“我们发现平台、模型、算法都要基于传感器采集的数据,所以从传感器的数据源头端开始做。”东方国信工业互联网研究院院长赵宏博告诉记者,仅从工业高炉单个应用场景看,就需要红外成像、热成像、激光雷达、数字测温芯片、柔性变偶等各种传感器。
目前东方国信的工业互联网平台能够接入不同类型的数据。尤其是一些流程��杂的业务系统,在工业互联网边缘端形成的小型专家系统已经是一个数据库。“在工业现场,会有六七千张数据表,数据之间的关联关系十分复杂,我们通过数据地图的‘血缘关系’,掌握海量数据的关联,实现数据治理。”赵宏博说。
工业互联网的边缘计算不局限于对数据的处理,一直从事工业互联网研究的GE也在做工业的边缘计算,随着边缘终端的增多、智能的增强,工业现场对边缘计算的需**成为一个小型的工业专家系统。
实现边缘“专家化”
“工业互联网平台不仅仅是用户平台,更是一个平台,几个企业、几个专家是不可能把工业互联网平台做大的,现在为什么要很突出地将工业互联网加以定义,是因为它与传统的工业云有一个重要区别——微服务架构。”赵宏博说,“微服务架构,可以通过程序层面的API接口支持不同的,而容器技术可以支持多种语言。”
通过微服务架构,一个机床领域的专家可以靠比较简单的“拖拉拽”的鼠标点击方式,把自己的经验数据上传,用已经封装好的机器学习算法对数据和算法做训练,做出一个预测机床性能的程序,可以应用在边缘,判断现场情况。
目前做边缘计算平台的企业也在尽量降低对垂直行业专家的IT要求。近几年各大国际云计算厂商纷纷布局边缘计算平台,包括Predix Machine,AWS Greengrass,Azure IoT Edge等。今年3月份,阿里计划在2018年战略投入“边缘计算”。边缘计算平台并不只负责数据的收集转发,更重要的是提供智能化运算,并产生可操作额决策反馈,控制设备端。容器化技术成为边缘计算平台的底层标准技术,是技术发展的必然选择。