

- Disconnection detection featured
- High-precision displacement meter (DC)Power Supply Type
- Variations of the sensor is available
- Compatibility of sensor head

SPECIFICATIONS

CONT	ROLLER	LS-117-1	LS-117-2	LS-117-3A	LS-117-3B	LS-117-4A	LS-117-4B	LS-117-5	LS-117-10	
SENSOR SPEC		HA-30R	HA-50R	HA-80R	HA-101R	HA-141R	HA-225R	HA-162R	HA-222R	
MEASURING RANGE*1		0~0.8mm	0~1mm	0~2mm		0~4mm		0~5mm	0~10mm	
LINEARITY	RANGE*2	0~0.3mm	0~0.5mm	5mm 0~1.3mm		0.5~2mm		1~3.5mm	2~6mm	
OUTPUT VOLTAGE		0~0.3V	0~0.5V	0~	·1.3V	0.5~2V		1~3.5V	2~6V	
LINEARITY		±2% of F,S								
RESOLUTIO	N	0.1% of F.S (1μm ,minimum)								
RESPONSE		DC~10kHz (-3dB)								
OUTPUT IM	IPEDANCE	52Ω								
STABILITY **3	SENSOR HEAD	0.05% of	0.03% of F.S/°C							
OTABILITY	CONTROLLER	F.S/℃	F.S/°C		0.02% of F.S/°C					
AMBIENT TEMPERATURE		CONTROLLER: 0~60°C SENSOR HEAD: -10~70°C 85%RH or less ,No condensation.								
POWER		DC+24V±10% ripple rate 10% or less								
CONSUMPTION		100mA or less								
FUNCTION*4		Disconnection alarm output (photoMOS output DC60V 100mA)								

- % 1 : MEASURING RANGE : Liniarity is more than $\pm 2\%$. Repeatability is assured.
- %2: LINEARITY RANGE : The range of measurement assured linearity within $\pm 2\%$.
- **%3**: SENSOR ENVIRONMENT: a half distance of F.S, material SS400, cable length 3m.
- *4: Red LED(ALARM) on the panel side lights when the sensor cable is disconnected. A no contact signal is output at the same time.
- Caution: When you are used in non-magnetic bodies such as aluminum, copper, SUS, please contact us.

CAUTIONS ON USE

 Please carry out independent wiring to use sensor-head.

- Other sensor head cannot be performed.
- The cable length cannot be changed.
- Please contact us if you use sensor-heads closely.

材質別係数表

Terminal arrangement (BOTTOM VIEW)

Material	Factor	
Iron	1.0	
SUS304	approx0.7	
Aluminum	approx0.5	
Copper	approx0.4	
Brass	approx0.4	

CONTROLLER DIMENSIONS

%Please buy terminal stand PYF08A or SM2S-05B separately.

ADJUSTMENT

(1)OFFSET-Adjustment

The sensor head is set from the object to the distance of A, and it is adjusted that the analog voltage output becomes OV by the OFFSET trimmer.

(2)SPAN-Adjustment

The sensor head is set from the object to the distance of B, and it is adjusted that the analog voltage output reaches the voltage value of C by the SPAN trimmer.

NOTES) Please repeat OFFSET-ADJ and SPAN-ADJ 2 to 3 times.

(3)OFFSET-Adjustment

The sensor head sets to the distance of A, and it is adjusted that the analog voltage output reaches the voltage value of D by the OFFSET trimmer.

Adjustment point of each type

	LS-117-1	LS-117 - 2	LS-117-3A/3B	LS-117-4A/4B	LS-117-5	LS-117-10
A(mm)	0	0	0.5	0.8	1.5	3
B(mm)	0.3	0.4	1.1	1.8	2.5	5
C(V)	0.3	0.4	0.6	1	1	2
D(V)	0	0	0.5	0.8	1.5	3

Example LS-117-2,HA-50R, target: Fe

SENSOR-HEAD DIMENSIONS

MARK	А	В	С
HA-30R	3.6	15	2.6
HA-50R	5.4	15	3.2
HA-80R	8	15	3.2

HA-101R,141R

	,						`
(11	n	it.	•	m	m	ı)

MARK	А	В	C	D
HA-101R	M10,P=1.0	15	3	14
HA-141R	M14,P=1.0	15	5	19

HA-162R

3m coaxial cable (standard cable)

HA-222R

CAUTION IN USE

OSENSOR HEAD MOUNTING

TYPE	MAX. FORQUE	
HA-30R	0.2Nm or less	
HA-50R	0.5Nm or less	
HA-80R	0.8Nm or less	
HA-101R	4Nm or less	
HA-141R	15Nm or less	
HA-162R	30Nm or less	
HA-222R	15Nm or less	

 $\mbox{HA-30R}{\sim}141\mbox{R}$ can be used in metals. If you use the sensor in metals, please contact us.

●MUTUAL INTERFERENCE

Refer to the table list for minimum distance between the plural sensor heads set at opposing or parallel position.

MARK	а
HA-30R	7
HA-50R	12
HA-80R	20
HA-101R	20
HA-141R	30
HA-225R	20
HA-162R	60
HA-222R	60

mm

VHF COAXIAL CABLE & CONNECTORS MATERIALS Need to re-adjust when it is cut or extend the coaxial is (surcharge).

TYPE	COAXIAL CABLE	COAXIA CONNECTOR
HA-30R·HA-225R	RG-174U or equiv.	BNC P-1.5,J-1.5
HA-50R~HA-162R	1.5D-QEVor equiv.	or equiv.
HA-222R	3D-QEVor equiv.	BNC P-3,J-3

●EFFECT OF SURROUNDING FERROUS MATERIALS

			mm
	MARK TYPE	Α	φВ
	HA-162R	9	30
3	HA-222R	18	42

REFERENCE DATE

(1) For the area of object

A specification value will be satisfied, if an object is a thing which has more than the diameter of the following graph when a subject is used as a disk.

(2) For a pillar shape object

A specification value will be satisfield, if the diameter of the piller of an object is by the thing which has 5 or more times of the diameter of a sensor head.

(3)The characteristic over metal other than iron. (Example of representative:LS-117-3A)

 $\mbox{\ensuremath{\%}\xspace{-1.5pt}{$

(4) Response For Frequency

^{**}The whole data can be different depending on the operating environment.