首页 >>> 公司新闻 >

公司新闻

锅炉脱硝改造存在的的问题及解决方法

摘要:本文结合牡丹江热电有限公司锅炉脱硝改造实例,阐述了220t/h煤粉锅炉采用低氮燃烧器SNCR和SCR联合脱硝过程中遇到的问题和解决方法。

1概述

牡丹江热电有限公司是股份制的热电联产企业,公司位于牡丹江市东南角,厂区毗邻牡丹江畔,占地面积22万平方米。与西城供热公司共同组成15台锅炉总容量2155t/h的环型供热管网,供热面积现已达到2千多万平方米,占牡丹江市集中供热面积65%以上。

牡丹江热电有限公司现有3台220t/h高温高压煤粉锅炉,#1、#2、#3锅炉均由哈尔滨锅炉厂设计制造,炉型为HG-220/9.8-YM10锅炉,蒸发量均为220t/h。#1、#2锅炉于1991年投入正式运行,#3锅炉于2003年投入运行。目前新建设1台240t/h高温高压煤粉锅炉,2018年正式投入运行。

为满足“十二五”期间对火电行业的NOx控制要求,牡丹江热电有限公司首先对3台220t/h高温高压煤粉锅炉进行烟气脱硝改造(SNCR+SCR);对1台新建240t/h高温高压煤粉锅炉设置SCR烟气脱硝装置。4台锅炉脱硝系统均以尿素作为还原剂。

为了进一步降低锅炉燃烧氮氧化物生成,对现有锅炉进行了低氮燃烧器改造。由于锅炉为热风送粉,中间储仓室制粉系统,三次风对低氮燃烧器的降氮效果影响较大,故将锅炉热风送粉改成乏汽送粉形式。*终形成“锅炉低氮燃烧器+SNCR+SCR”联合脱硝系统。

1.1低氮燃烧器改造

我公司低氮燃烧技术结合了分级燃烧和燃料再燃的优点,同时吸收了ALSTOM双级SOFA分级布置理念和国内非常成熟的一次风浓淡分离燃烧理念,形成了多煤种低氮燃烧装置及控制方法。

一次风采用水平浓淡煤粉燃烧技术,垂直空气分级燃烧结合分量偏置二次风技术,在燃烧器的中部和上部均布置了一层反切二次风,将燃尽风分为高位燃尽SOFA和低位混合SOFA双级燃尽风。

1.2乏汽送粉改造

#1、#2、#3锅炉采用中间煤粉仓、乏汽三次风、热风送粉系统。三次风布置在*上层,其下有三级二次风喷嘴。三次风的风量约为总风量的15%,其中含有10%~5%的煤粉。三次风的过量空气系数高,常在2.0以上。虽然三次风的引入,有某种程度上的空气分级燃烧的效果,使主燃区的空气系数降低,增强还原性气氛,有利于NOX的抑制和还原。然而由于三次风风量有限,炉内空气分级基本上由一次风、二次风配合完成,三次风对主燃区欠氧燃烧的程度和时间的作用有限。相反,三次风带粉,这些煤粉被喷入一个高温氧化性

气氛燃烧,增加相对数量的NOX,抵消了分级燃烧的效果。三次风对NOX的综合效果,是使NOX排放明显增加,而不是下降。磨煤机工作时,投三次风时的锅炉尾气NOX值显著增大,主要就是三次风细粉中的燃料氮在大过剩空气系数下氧化造成的。因此,为了降低锅炉出口烟气中NOX的浓度,将原热风送粉系统取消,改为乏汽送粉系统。

1.3SNCR和SCR烟气脱硝系统

由于我公司锅炉尾部烟道是两级省煤器与两级管式空气预热器交错布置,且炉后没有空间引出烟道布置多层催化剂,因此选择了SNCR和SCR协同脱硝系统。以尿素作为还原剂,我们采用炉内热解工艺。

脱硝改造的3台锅炉均为热电联产锅炉,采暖期3台炉满负荷运行;非采暖期一般仅1台锅炉半负荷运行。因此,#1~#3锅炉布置二层喷枪。

#1~#3锅炉SCR反应器,在高温省煤器和高温空预器之间的尾部烟道内,各增设一层催化剂,布置20个催化剂模块,截面为5m×8m。

由于高温省煤器出口温度在420℃左右,不能满足催化剂的**运行。为了满足反应器的温度和空间的需求,将#1、#2锅炉原光管高温省煤器更换为H型鳍片管,并调整高温省煤器及预热器之间的布置空间,降低高温省煤器出口烟气温度至380℃左右,且为SCR反应器留出3m左右的布置空间。#3锅炉高温省煤器出口温度在380℃左右,满足催化剂**运行温度要求,且高温省煤器与空预器之间的空间满足1层催化剂布置要求。因此#3炉没有进行高温省煤器进行改造。

2存在的的问题及解决方法

锅炉脱硝系统改造后,经过数月的运行,在不断地调试与消缺过程中,发现了一些问题,也是同类技术路线中较为普遍且具有代表性的问题。

2.1低温省煤器堵塞,压差大

脱硝改造后锅炉运行半月,低温省煤器前后压差开始增大,换热效率降低。采暖期停炉后检查发现低省堵塞严重。

2.1.1堵塞物成分判断

根据相关研究,安装脱硝的锅炉尾部垢样的典型成分分析,阴离子主要为硫酸根和氯根,阳离子主要为铵根离子和钙离子,其中:硫酸铵的沉积区域温度在260℃以上,且为松散灰结构;硫酸氢铵的沉积区域温度在160℃~120℃,且为粘稠结构;氯化铵的沉积区域温度在80℃~100℃,且为板结结构;烟气水露点温度在45℃~50℃,酸露点温度90℃~100℃。因此,从结垢部位所处温度段分析,低温省煤器表面结垢是CaSO4、NH4HSO4、NH4CL和飞灰组成的复合灰垢(从灰垢的表观特性、水浸泡、溶解后溶液pH值及灼烧,可间接证明判断)。

2.1.2堵塞物形成机理判断

1)SCR+SNCR反应生成的SO3和逃逸的氨,在烟温低于200℃后,形成硫酸氢铵;

2)烟气中氯化氢气体和逃逸的氨反应,生成氯化铵气溶胶;

3)换热器壁面温度≤80℃~100℃时,烟气中水的饱和度达到了硫酸氢铵和氯化铵的吸湿点湿度,产生吸潮现象;

4)飞灰附着在吸湿后的氯化铵、硫酸氢铵表面产生了结块板结现象。

2.1.3堵塞物去除具体措施

基于以上分析,我们采取了如下措施:

1)调整锅炉的喷尿素溶液量,严格控制氨逃逸量≤3PPm;

2)测量煤中的S和CL含量,在实际允许情况下,降低煤中的S和CL离子含量;

3)在阻力快速增加时,定期提高烟温到170℃,确保换热器壁温≥100℃,时间维持6h,使得生成的硫酸氢铵自然分解;

4)加强吹灰,改为蒸汽吹灰;

5)提高低温省煤器的水侧进水温度,降低烟气湿饱和度,减缓氯化铵的吸湿板结;

6)进行离线清洗:离线低压水大流量冲洗,冲洗水加碱,冲洗水温采用60℃~70℃高温水,以提高溶解度;

7)设置低温省煤器烟气旁路。在低温省煤器阻力增加失控时,为确保主机维持运行,增设烟气旁路。

旁路烟道截面,按照总烟道截面的15%考虑,在大压差下,其通流量可达总烟气量的30%以上。由于旁路分流,流经低温省煤器的烟量降为70%,阻力降为50%,从而临时缓解其阻力增加问题。

2.2飞灰含碳量升高及改善措施

低氮燃烧器改造后,由于主燃烧区过量空气系数降低,使得主燃烧区燃尽率降低,而燃尽区距离屏底距离较近,燃尽区的燃尽率不足以弥补主燃烧区燃尽率的减少,从而引起飞回针对低氮燃烧器的飞回含碳量升高的情况,一般可以采取以下措施治理:

1)将煤粉细度调低,提高煤粉均匀性指数

煤粉细度越细,燃尽时间越短,燃尽率越高,飞灰含碳量越低;在煤粉细度相同的情况下,煤粉均匀性指数越高,粗颗粒越少,飞灰含碳量越低。不同煤种低氮改造前后煤粉细度的控制策略如表1所示。

2)不同煤种的低氮燃烧器出口NOX的*佳控制范围

由于低氮燃烧器控制的出口NOX控制和飞灰含碳量控制,是相互矛盾的,因此必须互相兼顾,一般不同煤种建议不同的出口NOX控制范围。表2给出的是在兼顾飞灰含碳量的情况下建议的燃烧器出口NOx控制范围。

3)不同煤种飞灰含碳量和炉渣含碳量的升高情况

低氮燃烧器改造后,同一煤质相同工况下燃烧后的飞灰含碳量会较改造前有所升高,且飞灰含碳量本身也受煤质的挥发分含碳量升高。