一篇文章看懂光学膜的发展史!
偏光片、扩散膜、导光板、背板膜、锂电隔膜、窗膜、水处理膜、胶黏膜.....这些薄膜们是被谁发明的?发明之初是怎样设计的?它们的诞生背后又有怎样的故事?今天我们就一起来了解一下*初始的功能薄膜。
偏光片
目前*通用的偏光膜是兰特在1938年所发明的H片,其制法如下:首先把透明塑料板(通常用PVA)浸渍在I2/KI的水溶液中,使碘离子扩散渗入内层的PVA,微热后拉伸,PVA板变长的同时也变得又窄又薄。
PVA分子本来是任意角度无规则性分布的,受力拉伸后就逐渐一致地偏转于作用力的方向,附着在PVA上的碘离子也跟随着有方向性,形成了碘离子的长链。因为碘离子有很好的起偏性,它可以吸收平行于其排列方向的光束电场分量,只让垂直方向的光束电场分量通过,制成具有偏光作用的偏光膜。
而实际应用于光电行业的偏光片产业*早萌芽于日本,1999年5月,我国台湾省**家偏光片厂商力特光电投产,标志着日本厂商独占偏光片市场的时代结束,但力特的技术依然来源于日本厂商的技术授权。而韩国则于2000 年初开始进军TFT用偏光板市场,头个厂商LG化学于2000年3月量产,年产能125万片。
我国偏光片项目始于1994年,该年,深纺集团公司决定上马偏光片项目,由美国ADS公司提供生产设备与技术并参股,成立了盛波公司。但由于美方技术人员对技术掌握不够,经两年多调试未生产出一张合格产品。1997年美方撤股退出合作。此后经过盛波科研人员的努力,在1998年底公司终于成功开发出合格产品。
目前,老牌的偏光片生产厂商如日东电工已经开始转型不再开出新的产能,LG化学和住友化学也放慢了扩张步伐。韩国ACE和日本三立子因为资金问题,新线项目也处于停滞。现在日系原料厂认为*有发展前景的还是大陆市场及本土的偏光片厂。
扩散膜
扩散膜具有扩散光线的作用,即光线在其表面会发生散射,将光线柔和均匀的散播出来;多数扩散膜的基本结构是在透明基材上如PET两面涂光学散光颗粒。扩散膜起源于日本,*早由Keiwa、Kimoto、Tsujiden等日本厂商所掌控,Keiwa在1990年**推出扩散膜产品。在同期Tsujiden与Kimoto也推出了类似扩散膜产品。
反射膜
反射膜,通过特殊工艺增加薄膜的特殊性能,反射膜一般是采用透明薄膜为原料,经过特殊的镀膜工艺,增加薄膜材料光学表面的反射率的一种特殊薄膜材料。反射膜一般可分为三大类:金属反射膜、全电介质反射膜和金属电介质反射膜。应用于光学器件的反光材料研究已经有上百年的时间,起源已经难以考究。反射膜技术相对来说已经完善,迄今为止,反射率*好的反射片是由数百层增反薄膜组成的多层膜反射片,和普通反射片95%左右的反射率相比,其具有几乎对所有可见光波长99%~100%的反射率。
这样的反射片在循环增亮系统中非常有用,因为它可以减少循环光每次在反射时的损失。虽然在反射率上相差不多,但是在加载棱镜膜或者反射偏振片之后,得到的增益变化都在10%以上。
导光板
导光板(light guide plate)是利用光学级的亚克力/PC板材,然后用具有极高反射率且不吸光的高科技材料,在光学级的亚克力板材底面用UV网版印刷技术印上导光点。
LCD导光板照明技术*早是由日本明拓公司于1986年发明的,称为EDGE LIGHT,是目前笔记本电脑液晶显示屏背光照明的主流方法。它的工作原理是利用PMMA透明导光板将由冷阴极荧光管(线光源)发出的纯色白光,从透明板端面导入并扩散到整个板面,当光照射到导光板背面印刷的白色反光点时发生漫反射,从与光源入射面垂直的板面(工作面)射出。导光板照明通过巧妙运用光在透明板界面上全反射的原理,将端面射入的光偏转90°,从正面射出,从而起到照明的作用。
这种照明方式表面亮度高且照明系统体积小巧,对光的利用效率较高因而电力消耗较低,在笔记本电脑及数码像机等需要使用大面积LCD的产品方面获得了广泛的应用。
增亮膜BEF
二十多年前的一个冬天,加拿大魁北克的一个地下室,一位3M的研究员正在做实验。由于地处北半球高纬度,冬日的太阳整日低低地挂在地平线上方,于是他发明了一种带棱镜的玻璃导管,斜射的阳光射入导管一端后,会沿着导管壁传播,整个管子像个灯管通体发亮,令地下室顿时明亮许多。
在这之后,3M采用薄膜技术生产这种光导管,但在很多年内,这种棱镜导管的应用一直局限在建筑物的照明或装饰上,每年只有很小的销售量。二十世纪九十年代,随着笔记本电脑的普及,液晶显示技术开始飞速发展。由于液晶板独特的特性和构造,光的利用率很低,如何增加液晶显示的亮度一直是困扰科研人员的难题。
偶然的一个奇思妙想让3M的科学家尝试着剪开这种棱镜导管,平铺在LCD背光源上。令人意想不到的事情发生了,由于棱镜的聚光作用,这个新颖的尝试方法让液晶显示屏正向的亮度大为提高。之前,3M的科学家曾经受到蝴蝶翅膀由于鳞片物理结构对光线的折射、反射产生不同斑点想象的启发,利用高分子工业上*先进的计算机模拟控制系统,成功地发明了3M™多层光学膜(Multilayer Optical Film )技术,通过改变薄膜的结构来控制光的出射。
这种多层膜由上百层纳米级的膜组成,每一层的材料性质都不同。通过膜层间的光学作用,*终��到反射光的功能。
由此,3M的科学家想到了将这两个独特的发现合二为一,经过一段时间的研究开发,3M结合微复制技术和薄膜技术,进一步优化了棱镜导管的聚光功能,从而使其增亮效果更加显著,并将其命名为增亮膜BEF。
为了让客户更好地接受这一产品,3M的工程师购买了两台当时市场上*好的笔记本电脑,将其中一台加上两片棱镜方向相互垂直的增亮膜。在这层不起眼的薄膜的作用下,电脑屏幕亮度竟然比原来增加了一倍多!当这两台电脑摆在它的制造商面前,他们很快就被说服了。
从这**起,增亮膜开始了它的神奇之旅,广泛应用于小至手机、PDA,大至电脑显示器、液晶电视等各种液晶显示产品中,而这些产品的制造商也不再被如何既省电又能使屏幕亮度增加这个难题困扰了。
聚酰亚胺膜
聚酰亚胺膜(PolyimideFilm)或许是世界上已知的性能*好的薄膜类绝缘材料,有着“黄金薄膜”的美誉,包括均苯型聚酰亚胺薄膜和联苯型聚酰亚胺薄膜两类。前者为美国杜邦公司产品,商品名Kapton,由均苯四甲酸二酐与二苯醚二胺制得。后者由日本宇部兴产公司生产,商品名Upilex,由联苯四甲酸二酐与二苯醚二胺(R型)或间苯二胺(S型)制得。
光学镀膜
光学镀膜*早用在光学元件表面制备保护膜。随后,1817年,Fraunhofe在德国用浓硫酸或硝酸侵蚀玻璃,偶然**次获得减反射膜,1835年以前有人用化学湿选法淀积了银镜膜,它们是*先在世界上制备的光学薄膜。后来,人们在化学溶液和蒸气中镀制各种光学薄膜。
50年代,除大块窗玻璃增透膜的一些应用外,化学溶液镀膜法逐步被真空镀膜取代。真空蒸发和溅射这两种真空物理镀膜工艺,是迄今在工业撒谎能够制备光学薄膜的两种*主要的工艺。它们大规模地应用,实际上是在1930年出现了油扩散泵——机械泵抽气系统之后。
1935年,有人研制出真空蒸发淀积的单层减反射膜。但它的*先应用是1945年以后镀制在眼镜片上。1938年,美国和欧洲研制出双层减反射膜,但到1949年才制造出上等的产品...
自50年代以来,光学薄膜主要在镀膜工艺和计算机辅助设计两个方面发展迅速。在镀膜方面,研究和应用了一系列离子基新技术。1953年,德国的Auwarter申请了用反应蒸发镀光学薄膜的砖利,并提出用离子化的气体增加化学反应性的建议。
70年代以来,研究和应用了离子辅助淀积、反应离子镀和等离子化学气相等一系列新技术。它们由于使用了带能离子,而提供了充分的活化能,增加了表面的反应速度。提高了吸附原子的迁移性,避免形成柱状显微结构,从而不同程度地改善了光学薄膜的性能,是光学薄膜制造工艺的研究和发展方向
上海卷柔新技术光电有限公司是一家专业研发生产光学仪器及其零配件 的高科技企业,公司成立2005年,专业的光电镀膜公司,公司产品主要涉及光学仪器及其零配件的研发和加工;光学透镜、反射镜、棱镜等光学镀膜产品的开发和生产,为全球客户提供上等的产品和服务。
采用德国薄膜制备工艺,形成了一套具有严格工艺标准的闭环式流程技术制备体系,能够制备各种超高性能光学薄膜,包括红外薄膜、增透膜,ARcoating, 激光薄膜、特种薄膜、紫外薄膜、x射线薄膜,应用领域涉及激光切割、激光焊接、激光美容、医用激光器、红外制导、面部识别、VR/AR应用,博物馆,低反射橱窗玻璃,画框等。