了解生化分析仪基本参数的原理,有利于仪器、试剂的正确使用,有助于正确分析和处理测定数据。但是,配套系统的原装分析参数不宜更改;采用非仪器配套的试剂及校准品体系时,参数修改要慎重,对于不同仪器、不同类型的反应分析程序,所显示的人机对话分析参数信息有所不同。
一、反应监测时间
对于终点法来说,读取反应达到平衡时的吸光度计算样品中待测物的浓度。对于连续监测法来说,要注意观察反应进程曲线,从而确定反应的预孵育期,延迟时间、连续监测的时段。对于或伪反应来说,连续监测的时间是反应的动态期的吸光度;对于基于零级反应的酶催化活性浓度速率法测定,连续监测的是零级线性反应期的吸光度。对于连续监测法来说,动态反应期的时间越长,越适用于临床应用,对于以酶为工具的代谢物酶促动力测定法,要增加动态反应期,即延长反应达到平衡的时间,可在反应体系中加入竞争性抑制剂,这样还可以提高测定的线性范围,对于酶催化活性浓度连续监测法来说,一定要注意线性反应时间,有的酶,例如,以硫代丁酰胆碱为底物的血清假性胆碱酯酶速率测定法,线性反应时间只有90秒。对于连续监测法来说,在监测期至少应读4个点(3个△A)。
多数全自动生化分析仪可以在整个测定反应周期连续监测(如HITACHI 7170常规测定周期10分钟、监测34点,OLYMPUSAU600固定周期8分15秒、监测27点),但反应监测时间是指该时间内的测定读数要用于结果计算。它的设置与加样点、加试剂点(包括R1、R2……)、监测时间(读数点)、读数间隔时间及试剂样品比例等有关,要结合方法学,兼顾权衡。
1.反应时间(Reaction Time) 指仪器的一个分析周期中,试剂和样品混合末一点测定读数时间。它对终点法尤其重要,是终点法的瓶颈。有的仪器多个反应时间可选L如Hl—TACHI7170),须预先选定。多数仪器10分钟左右,这对试剂提出了较高要求。不少终点法试剂(尤其手工法试剂)反应时间常常也在lO分钟上下,测定时间没有余地,当样品浓度高或试剂质量下降时,均可致测定结果偏低。因此,终点法不宜采用标明反应时间接近和长于仪器大反应时间的试剂盒。否则,必须用接近测定范围上限的高浓度质控血清监测。
2.监测时间(读数点)和读数间隔时间各类型仪器不尽一致。离心式生化仪读数间隔时间短,监测时间也短。流动式生化仪读数间隔时间一般较长。分立式生化仪一般监测时间10分钟左右,间隔10-30秒读数一次。有的仪器在整个测定反应周期全程读数,有的只读取指定时间(点)的吸光度。
3.加试剂点采用双试剂时,加R2点决定R1与样品的反应时间,也决定R2与R1及样品的反应时间。一般仪器各5分钟左右。HITACHI7170有4个加试剂点,若采用双试剂,各5分钟,则加R2设在第3加试剂点。
4.反应监测时间还要考虑延迟时间的长短、测定物质的浓度范围及相关临床价值和工作效率等因素。
二、延迟时间
延迟时间(DelayTime)指试剂与样品混合后到监测开始之间的时间。一般用于两点法和速率法,某些情况下也用于终点法。终点法应选择反应趋于平衡的时间(稳定期或平衡期)作测定,测定点前即所谓的孵育期。速率法的线性反应期之前即延迟期。正确选择延迟时间的长短,有利于准确测定,减少试验误差。设置一般根据试剂盒的说明书,还应考虑本室的仪器特点和工作程序。
1.仪器特点 比如,半自动生化仪多为流动比色池,要考虑泵速、进样管长短、反应液黏稠度及混合情况,以及室温、反应液温度同反应要求温度间的温差等。全自动生化仪的测定读数设置方式不同,直接以“秒”设置,或以测定点设置、测定点间隔时间不一样,需要灵活掌握。
2.试剂及方法学
(1)试剂组成在酶活性的连续监测法时,若试剂含工具酶数量多、偶联反应多,则激活反应时间一般较长,延迟时间也较长,如肌酸激酶(NAC法)延迟时间常设置120-180秒;若试剂中底物经待测酶催化,其产物可以直接测定的,则延迟时间较短,如-谷氨酰转移酶(GGT)设定30-60秒。同一项目同一方法,但试剂配方不同,其反应快慢等特征也可能不同,如白蛋白测定。白蛋白与溴甲酚绿(BCG)为即时反应,10秒钟内已完成,其后球蛋白等也将与BCG发生反应,所以孵育时间不能延长。但在同一测定时间,BcG浓度、缓冲液种类、pH和表面活性剂不J司的试剂,测定结果可能差异明显。
(2)样品异常成分干扰有的试验项目需要用工具酶将内源性代谢产物耗尽,比如丙氨酸氨基转移酶活性测定试剂中须有足量的乳酸脱氢酶(LDH)。如果使用单试剂,正常血清样品延迟时间60秒即可;但当内源性酮酸增多(如酮症酸中毒)时,试剂内LDH常常不能在60秒内完全将其**,剩余酮酸会进入监测期干扰测定,使测定结果偏高,所以延迟时间应增至90~120秒。采用双试剂,则可在加入R1后即进入预孵育期。
(3)方法学要求比如肌酐(Jaffe法)测定的特异性不强,一般认为反应前20秒左右为乙酰乙酸等快反应干扰物呈色,后约80~100秒为蛋白质等慢反应假肌酐呈色,20~60秒肌酐呈色反应占主导地位。采用两点法或速率法可减少干扰,但具体取多长的延迟时间,应根据试剂和仪器读数特点,以干扰试验等方法来评价决定。
3.工作程序 要在保证准确性的前提下,合理设置参数,提高工作效率。突出的例子是半自动生化仪上酶活性连续监测法的延迟时间设定。由于只能单份样品逐一测定,若延迟时问全部设置在仪器内,每个延迟时间加监测时间至少1分钟以上,守候时间较长。工作量大时,可以根据仪器控温、加样及读数和试剂特点,以及室温情况,将延迟时问挪一部分到机外,套式操作,但要确保机内延迟时间不要进入线性反应期。
4.要兼顾延迟时间和监测时间反应时间是有限制的。在速率法和两点法中,延长延迟时间必然缩短线性监测期,减少测定的线性范围,也易发生底物耗尽。
三、样品量、试剂量与稀释量
有关参数包括样品量、试剂量、稀释水量、小反应体积和大比色杯容量等。如HITACHI7170反应体积180~380µl,大体积570µl。BT 224半自动生化仪流动比色池容积33µl,吸液量200~990µl,适体积500µl。
1.小反应体积 在仪器光度读数要用于结果计算时,反应液液面高度不低于光度计光径的小体积。它保证仪器的正确读数和计算,也是仪器测定精度和经济性的指针之一。在有的仪器中,它以反应体积的下���表示,有的则专门标明小反应体积。在单试剂测定中,样品与试剂的总体积不得少于此参数。在双试剂测定中,若R1与样品的反应读数不纳入结果计算。R1自勺加液量可不考虑此参数,如连续监测法;否则应考虑它对结果的影响,如终点法在加R2之前读数,并以此来扣除试剂或样品空白时。
在半自动生化仪中,适吸人量相当于少反应体积。它与进液管道长度、流动比色池容积,吸液泵抽吸力大小和液体黏稠度有关,它要保证光度检测不受空泡和前后样品携带污染的干扰。因此,吸人体积不能任意降低,必要时,应加大反应液量和吸人量。
2.大比色杯容量 这个参数含义明确。在有的仪器中,它以反应体积的上限表示,有的则专门标明大比色杯容量。反应液超过此体积,将致液体外溢,仪器测定系统被污损。
3.样品试剂比例样品与试剂的比例(SV:RV),也可表示为样品体积分数——样品体积与反应液总体积的比值(SV/TV),是方法学基本参数。酶活力测定中,样品在总体积中的比例应在10%以下。一般来说,待测物质在样品中含量低的、生理波动范围大的,样品用量较大。如Trinder反应测定血清葡萄糖、胆固醇等,样品试剂比例多为1:1OO,测定血尿酸或高密度脂蛋白胆固醇,常增加为1:50;ALT和AST的样品试剂比例多为1:1O至1:20。方法灵敏、吸光度高的实验方法,样品试剂比例小,如白蛋白BCG法,样品试剂比例常为1:200。肌酐Jaffe氏法监测时间短、吸光度值较低,样品试剂比例多为1:10。一般应以试剂说明为准,不宜轻易改动。
(1)改动样品试剂比例,影响一系列方法学参数。若比例增大,则线性范围缩小,线性反应时间缩短,样品内源性干扰、基质效应增加、旁路反应会增强,方法特异性也下降。若比例减少,检测信号偏低,信噪比(噪音/信号)增大,当仪器精度不�