前言
当今,随着电子源、扫描以及图像采集和处理系统等的发展,扫描电子显微镜(ScanningElectronMicroscope,简写为SEM)已成为纺织、生物学、医学、冶金、机械加工、材料、半导体制造、微电路检查,甚至月球岩石样品分析等领域的主要研究手段。同时它还在向复合型方向发展,即和X射线能谱分析技术(简称EDS)进行结合,成为研究分析物品表面结构与微区化学成分的有效的工具。当前产业用纺织品已广泛应用于工业、农业、环境保护、生物工程、化学化工、医疗卫生以及汽车等领域,其应用范围不断扩大,大大拓展了新的应用领域,开拓出新的市场和高新技术的特殊产品,如电子纺织材料、智能纺织材料、细胞组织支架材料和纤维织物柔性[1]显示器等。因此,利用先进的扫描电镜等工具研究纺织产品极其材料的化学与机械物理性能创造产业用纺织品材料就显得至关重要。可以说,扫描电镜的未来有着广阔的发展与应用前景。
1扫描电镜和X射线能谱仪原理
扫描电镜:其场深大约三百倍于光学显微镜,适用于表面形貌观察,特别是粗糙表面的观察和分析,图像富有立体感、真实感、易于识别和解释。放大倍数范围大,一般为50~20000倍,对于相组成的非均匀材料便于低倍下的普查和高倍下的观察分析。它具有相当的分辨率,可达2~6nm。扫描电子显微镜主要是利用二次电子成像,由聚光镜和物镜构成的电子光学系统[2],把电子枪发射出来的电子聚集成为一束极细的电子束,并聚焦于样品的表面,同时按顺序对样品表面进行逐行扫描[3]。用检测器收集从样品表面发射出来的二次电子,经视频放大形成图像信号,再经显像管显示。所获得的图像可以直接进行观察,也可以照相或者存储记录,它还可对试样进行成分、晶格、阴极发光、感应电导等多方面分析。
X射线能谱仪:电子束轰击样品时,产生弹性散射和非弹性散射两类物理过程,当两者相互作用发生具有能量交换的非弹性散射时会产生二次电子、俄歇电子、特征X射线、连续X射线,以及在可见光和紫外、红外波段的长波长电磁辐射。X射线能谱分析就是取出样品所产生的X射线作为信号进行分析的。分析这些X射线的能量就可知道组成样品的元素,即可实现对样品的定性分析;根据X射线能量不同的强度就可知道各种非导体与半导体的含量,即实现对样品的定量分析。由于电子显微镜具有很高的空间分辨率,它可以捕捉能谱分析仪在微米和亚微米尺度下的粒子,同时在与计算计配合后,通过线扫描也就可以获得直观的微区元素分布数据。
2 扫描电镜和X射线能谱仪的发展特点
扫描电镜的设计思想早在1935年便已提出,但受各种技术条件的限制,进展一直很慢。只是在近20年,扫描电镜才在提高分辨率方面取得了较大进展。现在,使用常规扫描电镜分辨率可达3.5nm左右。上世纪90年代中期,它与高速发展的计算机技术对接,实现了电脑控制和信息处理。之后,扫描电镜在二次电子像分辨率、非导体与半导体的扫描成像上取得了突破。特别是针对过去非导体与半导体材料需喷金后才能电描的技术改进为在低真空和低电压下的电镜扫描,为产业用纺织品的出新提供了良好的检测手段与保证。目前,使用广的常规钨丝阴极扫描电镜的分辨率为3.5nm左右,加速电压范围为0.2~30kV。扫描电镜配备X射线能谱仪后发展成分析扫描电镜。它比X射线波谱仪分析速度快、灵敏度高、还可进行定性和无标样定量分析。但是,这种分析型扫描电镜也存在不足之处,如能量分辨率低,一般为129—155eV,以及Si(Li)晶体需在低温下使用(液氮冷却)等。所以未来的扫描电镜发展主要在:高分辨率和分析型两类电镜的合并,同时实现用计算机控制,发展成多功能高分辨率的分析电镜。更大限度地满足大量多元素试样的超轻元素,低含量,高速定性、定量常规分析的需求。提高常规加速电压时的分辨本领,改善低压性能,减少直至消除对样品的破坏、损伤。无需先喷涂导电层或冷冻干燥处理,保持样品的原样进行观察。研制新的综合型的电镜附件设备,以便取得更多的试样信息。国内中国科学院北京科学仪器研制中心生产的X射线能谱分析系统Finder-1000,已经开发出自己的图形化能谱分析系统程序,分析元素从铍Be(4)元素到铀U(92)元素,实现了高精度的无标样及全标样定量分析。其分析速度极快,10种元素分析时间不足1秒钟。目前,国际先进的采用超导材料生产的能谱仪,分辨率业已高达5~15eV,已超过了25eV分辨率的波谱仪。
3 扫描电镜和X射线能谱仪在纺织材料研究中的应用
3.1 纤维表面形貌观察和元素成分分析
纤维材料的表面物理形态和化学结构是决定材料性能的基本因素,也是影响纤维材料的表面的摩擦性能、光学性能、吸水性和生物相容性等性能的主要因素。用扫描电镜观察、分析纤维表面形貌特征,如图1、图2所示。样品喷金后可直接放入样品室进行观察。根据纤维的微观结构不同,即细度不同,鳞片不同等形态特征区分各种纤维,同时纤维表面的各种元素产生具有不同能量的特征X射线,分析这些X射线的能量就可知道组成的元素,可看出各种纤维微量元素成分的差别,从这两方面对纤维进行种属鉴定和纤维鉴别,在鉴别基础上可通过荧光屏准确地测定各类纤维的直径和根数,得出各类纤维的定量分析。还可应用电镜观察织物结构特征、纱线中纤维排列形态、纤维径向分布等项目来分析纱线的物理机械性质、耐磨、染色性能。
3.2 纺织材料失效分析
纺织材料失效分析主要包括磨损、腐蚀和断口分析[5],利用SEM主要对磨损表面及磨损产物等进行分析,磨损、腐蚀的表面携带了主要的信息,可利用SEM结合EDS进行表面形貌分析和微区成分定性、半定量分析(如图4所示),可以优先了解腐蚀的因素(如夹杂物类型、材料缺陷等),由此鉴别材料失效的形成原因;利用扫描电镜观察、分析材料的断口特征(如图3所示,针毛尖部3~4mm鳞片破损严重),对断裂机理分析归类,明确断裂类型,其次是对裂纹源位置和扩展方向的判定,可根据断口学原理判断断裂性质,追溯断裂原因,调查断裂是跟原材料质量有关还是跟后续加工或使用情况有关等等。减少缺陷数目和尺寸,改善织物性能。
3.3 超微尺寸材料的研究
扫描电镜可以在比微米尺寸更小的范围内获得高倍率、立体感强、直观的二次电子图像。纳米材料又称为超微颗粒材料,由纳米粒子组成,一般是指尺寸在1~100nm间的粒子。应用在纺织品上具有拒水、拒油、防静电、防污、**、柔软等功能。通过扫描电镜,可以较直观地观察到超微纳米材料的表面形貌,可以看到纳米结构、看出颗粒的均匀度(例如图5,为纳米SiO2粉体小颗粒分散情况),也可以用这种方法来改变颗粒的孔分布,解决颗粒的团聚问题等。
图5 纳米SiO2粉体小颗粒分散情况
而研发功能性纺织材料是未来发展趋势,所以扫描电镜的作用在这个领域会越来越突显出来。
3.4 表面整理剂研究
使用各种表面整理剂可以提高织物的耐磨、耐洗、抗皱、抗静电、防水拒油等性能,对于它的研究也越来越重要。而在研究纤维的表面性能和表面结构,以及分析整理剂在纤维表面的结合状态,研究它的分散情况与纤维性能之间的关系,探讨特色整理剂的作用机理,以及开发新型整理剂等方面,扫描电镜起着越来越重要的作用。尤其是能谱技术,它可以对整理剂处理过的纤维表面元素成分进行定性和半定量分析,给出该元素浓度分布的扫描图像,并对其中所含元素浓度进行定量分析。
例如:图6、图7所示,这是涤纶纤维表面经防油剂改性后的电镜照片,可以看出防油改性丝的表面已经发生了根本性的变化。
3.5 表面改性处理的研究
表面改性处理的手段主要包括化学氧化法、低温等离子体改性、辐射接枝法等。经过改性处理的纤维可用SEM和EDS来观察其微观结构组成以及表面化学成分、浓度分布,这样就可以用它测定纱线接触表面上的沉积物以及由于磨损、刻蚀、沉淀、辐射等而导致的表面性质的变化。还可以为评定材料表面性质的家提供相关的技术支持。对研究改性的生产工艺,开发新用途都具有重要的意
3.6 显微组织研究
在扫描电镜的高倍观察条件下,材料的显微组织十分清晰。可用来观察纤维的孔洞结构,分析不同的孔洞结构与纤维性能之间的关系。或在多相结构材料[4]中,特别是在某些共晶材料和复合材料的显微组织和分析方面,由于可以借助于扫描电镜景深大的特点,所以完全可以采用深浸蚀[4]的方法,把基体相溶去一定的深度,使得欲观察和研究的相显露出来,这样就可以在扫描电镜下观察到该相的三维立体的形态,这是光学显微镜和透射电镜无法做到的。
3.7 断裂过程的动态研究
扫描电镜的大场深和大视场可清晰显示纤维断裂的三维形貌,而在较高放大倍数下又能观察断裂面局部区域的微细结构,这种图像有助于研究裂缝的产生、发展以及寻找裂缝源。有的型号的扫描电镜带有较大拉力的拉伸台装置,这就为研究纤维断裂过程的动态过程提供了很大的方便。可用来研究纤维的机械力学性能等。在试样拉伸的同时既可以直接观察裂纹的萌生及扩展与纤维显微组织之间的关系,又可以连续记录下来,为纺织材料研究提供直接的证据。
4 结束语
进入90年代以来,世界纺织工业和纺织品市场发生了深刻变化,纺织工业作为传统的劳动密集型加工产业,在信息产业的推动下,正向技术密集型、知识密集型产业发展。为了研究高技术含量、信息含量和高附加值的纺织产品,就需要结合高科技的检测分析手段,新型扫描电镜和X射线能谱仪及其附件设备在新型纺织材料的研究和开发中有着广阔的应用前景。