打造数智化坚强电网是加快建设新型电网、推动构建新型电力系统、助力能源电力绿色低碳转型、实现“双碳”目标的更新实践。在恶劣天气多发频发、高比例新能源接入的背景下,电力系统运行机理正面临深刻变化。经济社会高质量发展对供电方便可靠性的要求不断提高,需要升级再塑电网的可靠保障能力。坚强电网既是能源电力高质量发展的基础前提,也是多种电网形态协调发展和实现供电保障的基础。同时,立足“双碳”目标的绿色转型要求,以及在数字中国建设加快推进、数字化驱动生产方式变革的大背景下,加快数字化、智能化、绿色化发展成为新型电网建设的关键路径。数智化不是传统的“信息化、自动化、互动化”,而是要充分发挥数据要素价值,加强“大云物移智链”技术更新应用,实现电力算力融合发展,为电网高质量发展充分赋能赋效。
一 、概述(LYJS6000E上海变频介损仪技术先进,价格合理)
介损测试仪,是发电厂、变电站等现场全自动测量各种高压电力设备介损正切值及电容量的高精度仪器。由于采用了变频技术能保证在强电场干扰下准确测量。仪器采用中文菜单操作,微机自动完成全过程的测量。
该仪器同样适用于车间、试验室、科研单位测量高压电器设备的tgδ及电容量;对绝缘油的损耗测试、更具有方便、简单、准确等优点。
该仪器可用正、反接线方法测量不接地或直接地的高压电器设备,同时可以测量电容式电压互感器的tgδ及主电容C1、C2电容量。
仪器内部装备了高压升压变压器,并采取了过零合闸、防雷击等可靠保护措施。试验过程中输出0.5KV~10kV不同等级的高压,操作简单、可靠。
本仪器设有以下保护功能:
·高压短路保护
·CVT过压保护
·仪器接地不好保护
二、工作原理(LYJS6000E上海变频介损仪技术先进,价格合理)
在交流电压作用下,电介质要消耗部分电能,这部分电能将转变为热能产生损耗。这种能量损耗叫做电介质的损耗。当电介质上施加交流电压时,电介质中的电压和电流间存在相角差Ψ,Ψ的余角δ称为介质损耗角,δ的正切tgδ称为介质损耗角正切。tgδ值是用来衡量电介质损耗的参数。仪器测量线路包括一标准回路(Cn)和一被试回路(Cx),如图1所示。标准回路由内置高稳定度标准电容器与测量线路组成,被试回路由被试品和测量线路组成。测量线路由取样电阻与前置放大器和A/D转换器组成。通过测量电路分别测得标准回路电流与被试回路电流幅值及其相位等,再由单片机运用数字化实时采集方法,通过矢量运算便可得出试品的电容值和介质损耗正切值。
仪器内部已经采用了抗干扰措施,保证在外电场干扰下准确测量。
|
仪器结构
|
测量电路:傅立叶变换、复数运算等全部计算和量程切换、变频电源控制等。
控制面板:打印机、键盘、显示和通讯中转。
变频电源:采用SPWM开关电路产生大功率正弦波稳压输出。
升压变压器:将变频电源输出升压到测量电压,*大无功输出2KVA/1分钟。
标准电容器:内Cn,测量基准。
Cn电流检测:用于检测内标准电容器电流,10μA~1A。输入电阻〈2Ω。
Cx正接线电流检测:只用于正接线测量,10μA~1A。输入电阻〈2Ω。
Cx反接线电流检测:只用于反接线测量,10μA~1A。输入电阻〈2Ω。
反接线数字隔离通讯:采用精密MPPM数字调制解调器,将反接线电流信号送到低压侧。隔离电压20KV。
工作原理
启动测量后高压设定值送到变频电源,变频电源用PID算法将输出缓速调整到设定值,测量电路将实测高压送到变频电源,微调低压,实现准确高压输出。根据正/反接线设置,测量电路根据试验电流自动选择输入并切换量程,测量电路采用傅立叶变换滤掉干扰,分离出信号基波,对标准电流和试品电流进行矢量运算,幅值计算电容量,角差计算tgδ。反复进行多次测量,经过排序选择一个中间结果。测量结束,测量电路发出降压指令变频电源缓速降压到0。
三、主要技术参数(LYJS6000E上海变频介损仪技术先进,价格合理)
1、高压输出: 0.5 ~10kV,
每一档增加500V,共有二十档,容 量:1500VA
2、准 确 度: tgδ: ±(读数*1.5%+0.06%)
Cx: ±(读数*1.5%+5PF)
3、分 辨 率: tgδ:0.01% Cx:1pF
4、测量范围: 0.01% < tgδ < 100%
内施高压:3pF~60000pF/10kV 60pF~1µF/0.5kV
外施高压:3pF~1.5µF/10kV 60pF~30µF/0.5kV
电 源: AC 220V士10% 50士1Hz
测量方式:
a.工频:50Hz
b.异频:45Hz/55Hz 自动变频
7、谐波适应: ≤3%
8、使用条件: -15℃-50℃ 相对湿度<80%
9、外型尺寸: 460(L)×345(W)×345(H)
10、重 量: 35 kg
四、仪器面板(LYJS6000E上海变频介损仪技术先进,价格合理)
1、控制面板图(图 2)及高压背板图(图3)
图2
CX试品输入:正接线时输入试品电流,正接线时芯线(红夹子)接试品低压信号端,如果试品低压端有屏蔽极可接屏蔽线(黑夹子),无屏蔽时,可悬空。
反接线时,CX试品输入线不接或悬空。
测量接地:它同外壳连在一起,在正、反两种测量过程中,仪器都应可靠独立接地。应仔细检查接地导体不能有油漆或锈蚀,否则应将接地导体刮干净,并保证零电阻接地。接地不佳可能引起误差或数据波动,严重时,呈带高压开路可能引起危险。
内高压允许:打开此开关,仪器有高压输出。关闭此开关仪器内部无高压产生,亦无高压输出。
总电源开关:打开该开关,屏幕显示测量内容。
按键盘:“ESC”、“ENT”、
“ESC”:对光标所在处的内容否认时,或者已完成该内容。
“ENT”:对光标所在处的内容认同时,可按此键加以确认,并将光标移至它处。
:改变数值或改变正、反接线,异频、工频等内容。
屏幕显示:显示菜单、测量信息、测量结果。应避免长时间阳光爆晒。
亮度调节:调节屏幕对比度。
新时期供需矛盾加剧,恶劣天气多发频发,高比例新能源的接入增加了系统风险,对供电质量和可靠性提出了更高要求。电网需要注重源网荷储协同发展,多层级电网有机衔接,增强电网承载能力,提升防灾抗灾水平。
加快大电网骨干网架升级,可以提升能源电力供应保障能力。我国电力系统呈现出“源荷逆向分布”的特点,稳定运行面临交直流混联系统性风险、电源结构性矛盾,以及网源建设不协调的阶段性困难。随着以沙漠、戈壁、荒漠地区为重点的大型风电光伏基地和深远海上风电基地建设加快,送端电源基地的自然条件更加复杂,网源协调难度加大。需要加强多维时空互补协调调度,结合多端柔性直流汇集组网技术,提高对弱送端大规模新能源汇集外送的适应性,并优化特高压交流可靠支撑网,提升受端直流可靠承载能力,形成分层分区、柔性发展、适应性强的主干网架。
推动主配微贯通协同,有助于服务新能源高质量发展。受海量分布式新能源发电快速增长的影响,配网有源化、“潮汐式”供电模式带来反向重过载等问题。需要合理构建纵向主配微分层、横向差异化分群的形态格局,打造分层承载、分级校验、多级协同的一体化枢纽平台,实现分布式新能源、电动汽车、微电网、新型储能、虚拟电厂等交互式多元主体友好接入、可靠承载。要坚持量率统筹协同,就地就近的平衡,因地制宜有序发展分布式电源,鼓励具备自平衡、自保障、智能化、经济性特征的分布式电源发展,并差异化配置储能或购置共享储能,提升网源协调能力。
提升电网防灾抗灾能力,应夯实电网本质可靠的物质基础。近年来,恶劣天气多发频发,水线北移、旱涝急转、台风北上等新挑战增加防灾抗灾的难度,单一灾害破坏力加重、各类灾害叠加的风险增大,局部地区电网面临更严峻的考验。需要完善规划设计,完善差异化设防标准,推进坚强局部电网建设,加强重要用户“生命线”通道,提升自愈能力和应急抢修水平。加强与气象部门的联合研究,提高对气候变化的认识,加强对微气候的了解,通过差异化设防标准提高电网的气候弹性和可靠韧性。从源网荷储各环节挖掘潜力,丰富灵活调节资源,提高电网的调节柔性和保障能力。
上海来扬电气转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。