1、LYFL-V防雷元件测试仪性能特征
适用于氧化锌避雷器(压敏电阻),金属陶瓷二、三电极放电管、真空避雷等过压防护元件直流参数的测试。
具有记忆、运算、保持、控制、自检功能。
具有高压短路保护、过流保护、高压予置等功能。高压自泄放时间小于1秒。
测试结果由31/2LCD数字显示、准确度高,可靠性好。
2、LYFL-V防雷元件测试仪技术指标
2.1压敏电阻测量
技术指标
|
测量范围
|
工作误差
|
测试条件
|
起始动作电压
U1mA
|
15 ~ 100V
|
≤±2V±1d
|
1mA±5μA
|
101~1700V
|
≤±2%±1d
|
漏电流
I 0.75U,1mA
|
0.1~199.9μA
|
≤2μA±1d
|
0.75U1mA
≤±2%±1d
|
2.2放电管测量
技术指标
|
测量范围
|
工作误差
|
测试条件
|
放电电压
|
20~1700V
|
≤±2%±1d
|
电压上升率100±8V/秒
|
放电电压记忆显示时间
|
1.5~3.5秒
|
3、LYFL-V防雷元件测试仪其它指标
绝缘电阻:6MΩ(500V)
耐压:AC 1.5kV 50Hz 1min
工作温度和湿度:0~+40℃ <85%RH
储存温度和湿度:-10℃~+50℃ <90%RH
电源:AC220V±10% 或 DC12V ±0.5V 1000mA
功耗:12W
外形尺寸:208mm(L)×190mm(W)×78mm(D)
重量:≤2kg
4、LYFL-V防雷元件测试仪使用方法
4.1使用“自动”位测试压敏电阻
4.1.1 开启电源,将面板“测试选择”键置“压敏电阻”位;将“U0.75选择”键置“自动”位,将面板“显示切换”开关置“电压”位。
4.1.2 将被测压敏电阻用测试线接入“测试孔”的“+”、 “-”端后轻触高压“启动”键,仪器显示起始动作电压U1mA值,随后按住“漏流”键不放,仪器显示0.75U1mA电压值,如果同时将面板“显示切换”开关置“电流”位后仪器显示值为I 0.75U,1mA值;松开“漏流”键,仪器将显示流过被测压敏电阻的电流约1mA。
4.1.3 轻触高压“停”键后取下被测压敏电阻。
4.2 使用“人工”位测试压敏电阻
4.2.1 将“测试选择”键置“压敏电阻”位;将“U0.75选择”键置“人工”位;将“显示切换”开关置“电压”位,开启电源和高压后,调节“高压预置”旋钮,使仪器预置高压值高于将被测试的压敏电阻的标称值1.2倍以上,关闭高压;接入被测压敏电阻,此时启、停高压,可对多个类似被测压敏电阻进行U1mA单一指标的连续测试。
4.2.2 根据测得压敏电阻U1mA值计算出0.75U1mA值,将仪器预置电压调节到此值,再将“显示切换”开关置“电流”位, 此时不关闭高压按住“漏流”键不放,接入U1mA值相同的被测压敏电阻进行I 0.75U,1mA单一指标的连续测试。
4.3 放电管测试
4.3.1 将“测试选择”键置“放电管”位;“U0.75选择”键置
“人工”位;开启电源和高压。
4.3.2 调节“高压预置”旋钮。使仪器显示的预置电压值低
于被测放电管标称值100V以下,直至起始位置(约15V)。
4.3.3 将被测放电管用测量线接入仪器“测试孔”“+”、“-”端钮,轻触“升压”键,待绿色“放电”指示灯点亮,仪器显示稳定值为该放电管点火电压值。
连续测试时,须待预置电压显示值稳定后,再启动“升压”键。
4.4 其它功能
4.4.1 自检功能, 在压敏电阻测试过程中,变换“显示切换”开关,可检查本仪器测试条件技术参数的正确性。
4.4.2 “U0.75选择”键置“人工”位,调节“高压预置”旋钮,使预置电压缓慢上升,测试压敏电阻时切换“显示切换”开关,可给出该压敏电阻的V/A特性曲线;测试放电管的点火电压值,将100V/秒条件下的测试值与预置电压缓慢上升点火值相比对,可基本判定其特性。
5、LYFL-V防雷元件测试仪面板功能
1.测试孔+ 2.测试孔- 3.功能选择开关
4.高压指示灯 5.测试按键开关 6.高压预置旋钮
7.显示值单位指示灯 8.LCD显示屏 9.放电管放电指示灯
1.交流电源插孔 2.保险管(250V /2A) 3.外接电源插孔 4.电源开关
6、注意事项
“自动”位测压敏电阻时,须避免开路时启动高压,以免损坏仪器。
测试时,不要触及金属部位,以免高压电击伤人。
仪表应避免受潮、雨淋、暴晒、跌落。
7、保管
应存放在-10℃~+50℃,相对湿度不大于90%RH无酸性、碱性及其他腐蚀性气体的环境或室内。
湖北随州广水,世界头个县域级100%新能源新型电力系统中的北环智能变电站迎来了确定性网络交换机的首试。针对该变电站某条出线的保护装置通信功能,国网湖北电力在保有原先通讯设备的基础上,对交换机和相关信号传输设备进行了并行改造。
为了验证确定性网络交换机的实际效果,国网湖北电力还模拟了通信通道堵塞场景,做了网络专项功能测试。
“我们在确定性网络传输通道上注入了100%干扰信号后,变电站数据采集、跳闸等一切信号传输正常,没有延迟现象。而传统网络交换机遇到这种情况,数据传输将严重受阻。”基于确定性网络交换机,他们还比对了网络通道堵塞和不堵塞时的场景,结果显示数据传输效果一样。
在相对简单的变电站线路保护装置应用成功后,国网湖北电力还瞄准变电站变压器和母线的保护装置,在武汉白沙洲110千伏变电站实施网络通讯改造,不断拓展确定性网络交换机在复杂通信场景的应用。
据悉,这一技术的研发应用,能大幅提升电网数据传输的实时性、可靠性和高效性,有望成为支撑新型电力系统的重要通信技术之一。
上海来扬电气转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。