清华大学能源环境经济研究所所长张希良表示,碳达峰、碳中和与国家气候变化目标相关。要实现“双碳”目标,2030年以后特别是2035年以后,能源系统转型尤其是电力系统转型需要加速,因为电气化大趋势下电力系统是能源系统的核心,而风电和光伏将成为未来电力系统的主力。电力和工业需要在“十五五”初期碳达峰,否则2030年实现碳达峰的目标将面临较大的挑战。研究显示,2030年前,能效提升对能源系统碳中和的贡献占比可高达66%。为了实现“双碳”目标,除了技术上需要更新外,还需要体制与机制更新,包括电力市场改革、碳市场发展以及碳市场与绿色电力市场协同,尤其是碳市场将会对促进可再生能源的发展发挥较大的作用。
围绕实现可再生能源与煤电协调发展的路径这一议题,张希良表示,我国提出2030年风电和光伏要达到12亿以上,但是根据我们的计算,2030年风电和光伏需要达到18亿才能真正满足国家的新增的能源消费需求。在2025年和2030年,风电光伏还不能满足能源需求,仍需要煤电来保证。可再生能源具有非常大的潜力,但是大比例的新能源占比也会造成较大的问题,需要发展容量市场、继续推动市场化。过去可再生能源都是从供给侧提供补贴等政策来驱动,将来应考虑如何激励需求拉动可再生能源消费,例如推动绿电市场、碳市场和可再生能源融合从而促进可再生能源更好的发展。未来还有很长的路要走。
第1章 局放理论概述(WBTCD-9308出厂试验局部放电分析仪拥有雄厚的技术力量)
在开始我们的实验以前,我们首先应该对局部放电有个初步的了解,为什么要测量局部放电?局部放电有什么危害?怎样准确测量局部放电?有了上述理论基础可以帮助我们理解测量过程中的正确操作。
一、局部放电的定义及产生原因
在电场作用下,绝缘系统中只有部分区域发生放电,但尚未击穿,(即在施加电压的导体之间没有击穿)。这种现象称之为局部放电。局部放电可能发生在导体边上,也可能发生在绝缘体的表面上和内部,发生在表面的称为表面局部放电。发生在内部的称为内部局部放电。而对于被气体包围的导体附近发生的局部放电,称之为电晕。由此 总结一下局部放电的定义,指部分的桥接导体间绝缘的一种电气放电,局部放电产生原因主要有以下几种:
电场不均匀。
电介质不均匀。
制造过程的气泡或杂质。*经常发生放电的原因是绝缘体内部或表面存在气泡;其次是有些设备的运行过程中会发生热胀冷缩,不同材料特别是导体与介质的膨胀系数不同,也会逐渐出现裂缝;再有一些是在运行过程中有机高分子的老化,分解出各种挥发物,在高场强的作用下,电荷不断地由导体进入介质中, 在注入点上就会使介质气化。
二 、局部放电的模拟电路及放电过程简介(WBTCD-9308出厂试验局部放电分析仪拥有雄厚的技术力量)
介质内部含有气泡,在交流电压下产生的内部放电特性可由图1—1的模拟电路(a b c等值电路)予以表示;其中Cc是模拟介质中产生放电间隙(如气泡)的电容;Cb代表与Cc串联部分介质的合成电容;Ca表示其余部分介质的电容。
I——介质有缺陷(气泡)的部份(虚线表示)
II——介质无缺陷部份
图1—1 表示具有内部放电的模拟电路
图1—1中以并联有—对火花间隙的电容Cc来模拟产生局部放电的内部气泡。图1—2表示了在交流电压下局部放电的发生过程。
U(t)一一外施交流电压
Uc(t)一一气泡不击穿时在气泡上的电压
Uc’(t)一一有局部放电时气泡上的实际电压
Vc一一气泡的击穿电压
Y r一一气泡的残余电压
Us—局部放电起始电压(瞬时值)
Ur一一与气泡残余电压v r对应的外施电压
Ir一一气泡中的放电电流
电极间总电容Cx=Ca+(Cb×Cc)/(Cb+Cc)=Ca电极间施加交流电压 u(t)时,气泡电容Cc上对应的电压为Uc(t)。如图2—1所示,此时的Uc(t)所代表的是气泡理想状态下的电压(既气泡不发生击穿)。
Uc(t)=U(t)×Cb/Cc+Cb
外施电压U(t)上升时,气泡上电压Uc(t)也上升,当U(t)上升到Us时,气泡上电压Uc达到气泡击穿电压,气泡击穿,产生大量的正、负离子,在电场作用下各自迁移到气泡上下壁,形成空间电菏,建立反电场,削弱了气泡内的总电场强度,使放电熄灭,气泡又恢复绝缘性能。这样的一次放电持续时间是极短暂的,对一般的空气气泡来说,大约只有几个毫微秒(10的负8次方到10的负9次方秒)。所以电压Uc(t)几乎瞬间地从Vc降到Vr,Vr是残余电压;而气泡上电压Uc‘(t)将随U(t)的增大而继续由Vr升高到Vc时,气泡再—次击穿,发生又—次局部放电,但此时相应的外施电压比Us小,为(Us-Ur),这是因为气泡上有残余电压Vr的内电场作用的结果。Vr是与气泡残余电压Yr相应的外施电压,如此反复上述过程,即外施电压每增加(Us-Ur),就产生一次局部放电.直到前—次放电熄灭后,Uc’(t)上升到峰值时共增量不足以达Vc(相当于外施电压的增量Δ比(Us-Ur)小)为止。
此后,随着外施电压U(t)经过峰值Um后减小,外施电压在气泡中建立反方向电场,由于气泡中残存的内电场电压方向与外电场方向相反,故外施电压须经(Us+Ur))的电压变化,才能使气泡上的电压达到击穿电压Vc,(假定正、负方向击穿电压Vc相等),产生一次局部放电。放电很快熄灭,气泡中电压瞬时降到残余电压Vr(也假定正、负方向相同)。外施电压继续下降,当再下降(Us-Ur)时,气泡电压就又达到Vc从而又产生一次局部放电。如此重复上述过程,直到外施电压升到反向蜂值一Um的增量Δ不足以达到(Us-Ur)为止。外施电压经过一Um峰值后,气泡上的外电场方向又变为正方向,与气泡残余电压方向相反,故外施电压又须上升(Us+Ur)产生第1次放电,熄灭后,每经过Us—Ur的电压上升就产生一次放电,重复前面所介绍的过程。如图1—2所示。
由以上局部放电过程分析,同时根据局部放电的特点(同种试品,同样的环境下,电压越高局部放电量越大)可以知道:一般情况下,同一试品在一、三象限的局部放电量大于二、四象限的局部放电量。那是因为它们是电压的上升沿。(第三象限是电压负的上升沿)。这就是我们测量中为什么把时间窗刻意摆在一、三象限的原因。
三、局部放电的测量原理:(WBTCD-9308出厂试验局部放电分析仪拥有雄厚的技术力量)
局放仪运用的原理是脉冲电流法原理,即产生一次局部放电时,试品Cx两端产生一个瞬时电压变化Δu,此时若经过电Ck耦合到一检测阻抗Zd上,回路就会产生一脉冲电流I,将脉冲电流经检测阻抗产生的脉冲电压信息,予以检测、放大和显示等处理,就可以测定局部放电的一些基本参量(主要是放电量q)。在这里需要指出的是,试品内部实际的局部放电量是无法测量的,因为试品内部的局部放电脉冲的传输路径和方向是极其复杂的,因此我们只有通过对比法来检测试品的视在放电电荷,即在测试之前先在试品两端注入一定的电量,调节放大倍数来建立标尺,然后将在实际电压下收到的试品内部的局部放电脉冲和标尺进行对比,以此来得到试品的视在放电电荷。 相当于外施电压的增量Δ比(Us-Ur)小)为止。
四、局部放电的表征参数(WBTCD-9308出厂试验局部放电分析仪拥有雄厚的技术力量)
局部放电是比较复杂的物理现象,必须通过多种表征参数才能全方位的描绘其状态,同时局部放电对绝缘破坏的机理也是很复杂的,也需要通过不同的参数来评定它对绝缘的损害,目前我们只关心两个基本参数。
视在放电电荷——在绝缘体中发生局部放电时,绝缘体上施加电压的两端出现的脉动电荷称之为视在放电电荷,单位用皮库(pc)表示,通常以稳定出现的*大视在放电电荷作为该试品的放电量。
放电重复率——在测量时间内每秒中出现的放电次数的平均值称为放电重复率,单位为次/秒,放电重复率越高,对绝缘的损害越大。
第2章 局放测试的试验系统接线。
在了解了局部放电的基本理论之后,在本章我们的重点转向实际操作,我们先介绍局部放电测试中常用的三种接法,随后我们再介绍整个系统的接线电路,*后我们再分别介绍几种典型的试品的试验线路。
一、局放电测试电路的三种基本接法及优缺点。
(1) 标准试验电路,又称并联法。适合于必须接地的试品。其缺点是高压引线对地杂散电容并联在 CX上,会降低测试灵敏度。
(2)接法的串联法,其要求试品低压端对地浮置。其优点是变压器入口电容、高压线对地杂散电容与耦合电容CK并联,有利于提高试验灵敏度。缺点是试样损坏时会损坏输入单元。
(3)平衡法试验电路:要求两个试品相接近,至少电容量为同一数量级其优点是外干扰强烈的情况下,可取得较好抑制干扰的效果,并可消除变压器杂散电容的影响,而且可做大电容试验。缺点是须要两个相似的试品,且当产生放电时,需设法判别是哪个试品放电。
值得提出的是:由于现场试验条件的限制(找到两个相似的试品且要保证一个试品无放电不太容易),所以在现场平衡法比较难实现,另外,由于采用串联法时,如果试品击穿,将会对设备造成比较大的损害,所以出于对设备保护的想法,在现场试验时一般采用并联法。
二、采用并联法的整个系统的接线原理图。(WBTCD-9308出厂试验局部放电分析仪拥有雄厚的技术力量)
该系统采用脉冲电流法检测高压试品的局部放电量,由控制台控制调压器和变压器在试品的高压端产生测试局放所需的预加电压和测试电压,通过无局放藕合电容器和检测阻抗将局部放电信号取出并送至局部放电检测仪显示并判断和测量。系统中的高压电阻为了防止在测试过程中试品击穿而损坏其他设备,两个电源滤波器是将电源的干扰和整个测试系统分开,降低整个测试系统的背景干扰。
根据上述原理图可以看出,局部放电测试的灵敏度和准确度和整个系统密切相关,要想顺利和准确的进行局部放电测试,就必须将整个系统考滤周到,包括系统的参数选取和连接方式。另外,在现场试验时,由于是验证性试验,高压限流电阻可以省掉。
三、几种典型试品的接线原理图。
(1)电流互感器的局放测试接线原理图
(2)电压互感器的局放测试接线原理图
A.工频加压方式接线原理图
为了防止电压互感器在工频电压下产生大的励磁电流而损坏,高压电压互感器一般采取自激励的加压方式。在电压互感器的低压侧加一倍频电源,在电压互感器的高压端感应出高压来进行局部放电实验。这就是通常所说的三倍频实验。其接线原理图如下:
(3)高压电容器.绝缘子的局放测试接线原理图
(4) 发电机的局放测试接线原理图
(5)变压器的局部放电测试接线原理图
我们仅仅是在原理性的总结了几种典型试品的接线原理图,至于各种试品的加压方式和加压值的多少,我们在做试验的时侯要严格遵守每种试品的出厂检验标准或交接检验标准。
第三章 概述
WBTCD-9308智能局部放电检测仪是我公司*新推向市场的新一代数字智能仪器,该仪器在原有产品WBJF-2010、JF-2020局放仪的基础上采用嵌入式ARM系统作为中央处理单元,控制12位分辨率的高速模数转换芯片进行数据采集,将采集到的数据存放在双端口RAM中。实现从模拟到数字的跨越。使用26万色高分辨率TFT-LCD数字液晶显示模组实时显示放电脉冲波形,配备VGA接口,可外接显示器。与传统的模拟式示波管显示局部放电检测仪相比有以下特点:
1.彩色显示器,双色显示波形,更清晰直观;
2.可锁定波形,更方便仔细查看放电波形细节;
3.自动测量并显示试验电源时基频率,无需手动切换;
4.配备VGA接口,可外接大尺寸显示器;
5.与示波管相比寿命更长。
6.具有波形锁定、打印试验报告功能
本仪器检测灵敏度高,试样电容覆盖范围大,适用试品范围广,输入单元(检测阻抗)配备齐全,频带组合多(九种)。仪器经适当定标后能直读放电脉冲的放电量。
本仪器是电力部门、制造厂家和科研单位等广泛使用的局部放电测试仪器。
第四章 主要技术指标:
1.可测试品的电容范围: 6PF—250uF。
2.检测灵敏度(见表一):
表一
输入单
元序号
|
调 谐 电 容
|
单 位
|
灵敏度(微微库)
(不对称电路)
|
1
|
6-25-100
|
微微法
|
0.02
|
2
|
25-100-400
|
微微法
|
0.04
|
3
|
100-400-1500
|
微微法
|
0.06
|
4
|
400-1500-6000
|
微微法
|
0.1
|
5
|
1500-6000-25000
|
微微法
|
0.2
|
6
|
0.006-0.025-0.1
|
微 法
|
0.3
|
7
|
0.025-0.1-0.4
|
微 法
|
0.5
|
8
|
0.1-0.4-1.5
|
微 法
|
1.0
|
9
|
0.4-1.5-6.0
|
微 法
|
1.5
|
10
|
1.5-6.0-25
|
微 法
|
2.5
|
11
|
6.0-25-60
|
微 法
|
5.0
|
12
|
25-60-250
|
微 法
|
10
|
7R
|
电 阻
|
|
0.5
|
3、放大器频带:
(1)低端:10KHZ、20KHZ、40KHZ任选。
(2)上端:80KHZ、200KHZ、300KHZ任选。
4、放大器增益调节:
粗调六档,档间增益20±1dB;细调范围≥20dB。每档之间数据为10倍关系:如第三档检测数据为98,则第2档显示数据为9.8,如在第三档检测数据超过120,则应调至第2档来检测数据,所得数据应乘以10才为实际测量值。
5、时间窗:
(1)窗宽:可调范围15°-175°;
(2)窗位置:每一窗可旋转0°- 180°;
(3)两个时间窗可分别开或同时开。
6、放电量表:
0-100误差<±3%(以满度计)。
7、椭圆时基:
(1)频率:50HZ、或外部电源同步(任意频率)
(2)椭圆旋转:以30°为一档,可作360°旋转。
(3)显示方式:椭圆—直线。
8、试验电压表:
精度:优于±3%(以满度计)。
9、体积: 320×480×190(宽×深×高)mm3。
10、重量:约15Kg。
三、系统工作原理:
本机的局部放电测试原理是高频脉冲电流测量法(ERA法)。
试品Ca在试验电压下产生局部放电时,放电脉冲信号经藕合电容Ca送入输入单元,由输入单元拾取到脉冲信号,经低噪声前置放大器放大,滤波放大器选择所需频带及主放大器放大(达到所需幅值与产生零标志脉冲)后,在示波屏的椭圆扫描基线上产生可见的放电脉冲,同时也送至脉冲峰值表显示其峰值。
时间窗单元控制试验电压每一周期内脉冲峰值的工作时间,并在这段时间内将示波屏的相应显示区加亮,用它可以排除固定相位的干扰。
试验电压表经电容分压器产生试验电压过零标志讯号,在示波屏上显示零标脉冲,椭圆时基上两个零标脉冲,通过时间窗的宽窄调节可确定试验电压的相位,试验电压大小由数字电压表指示。
整个系统的工作原理可参看方框图(图一)。
四、结构说明
本仪器为标准机箱结构,仪器分前面板及后面板两部分,各调节元件的位置及位置和功能见下图说明。
1、4:长按改变门窗的位置
2、3:长按改变门窗的宽度
5:时钟设置按钮
6:按9号键锁定后再按此键,即可打印试验报告
7:分压比设置按钮
8:门开关,重复按可选择左右门
9:波形锁定按键
10:椭圆旋转按钮
11:显示方式按钮
12:取消按钮
A、B、C通道选择旋钮与后面板A、B、C测量通道相对应
备注: 如需数据导出,步骤如下:
(1)在电脑上安装好RS232通用串口线驱动。(驱动盘里有安装介绍)及局放试验报告编辑器软件。
(2)将串口线和局放仪后面的数据接口连接好。
(3)将需要保存的波形锁定然后点击 局放试验报告编辑器
(4)点击Start键生成锁定后的数据,然后点击测试报告如下图所示:
(5)点击测试报告后则会出现局放试验报告编辑器可以根据需要填写上面的内容。
(6)填写好表格后点击生成报告数据会以Word文档的形式出现,再将数据保存至电脑,如下图所示:
中国人民大学应用经济学院院长郑新业表示,经济高质量发展对能源的要求,是既要保障有能源可用,又要低碳清洁,还要有价格竞争力。他强调,以风光为主的可再生能源装机容量并不等于有效容量,在现阶段可再生能源需要火电来提供调峰备用。另外,不同地区不同人群碳排放差异很大,碳减排的成本和收益是不对称的。收益无法确���,很难匹配。由于碳减排是有成本的,但是直接收益并不明确,所以国内政策的着力点应该是那些二氧化碳排放比较多的地区和行业。如果按纯排放领域,应主要集中在二氧化碳排放大省和大行业。但综合来看,排放大省山西重要,北京同样很重要。山西减排潜力比较大,但北京减排带来的价值比较高。他认为电价调整是必要的。系统成本和电网成本等加在一起的时候,供电的成本就会上升。随着供给侧产业结构越来越清洁,需求侧的价格承受能力越来越高,能够更多承受比较高的转型成本,能源价格冲击没有想象的那么大,要用好政策工具,匹配和发展阶段相适应的价格政策和机制。
中国能源研究会能源与经济专委会主任戴彦德表示,全球碳中和势不可挡,机会难得,应当放眼未来,把握大势,顺应大势,抢得碳中的科技先机。整体来看,碳中和是实现我国高质量发展的内在要求,是建设现代化强国的必然选择,我国应当坚定强国、美丽中国、碳中和三个目标并举,谋划能源的发展。在近期,应当以可靠保供和促进可再生能源发展为目标,谋划布局煤电项目;中期应当依靠储能技术与电网技术的发展,减少对煤电项目的依赖;远期,煤电应当CCS+CCUS下脱碳运行;在长期,应当依靠新一代受控核聚变技术,退出能源市场。
扬州万宝转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。