在随州广水科技示范工程能量路由器站设计和运维方面,研发团队也开展了相应更新。
一般而言,传统换流站选址偏僻,对于占地面积的要求较小,但县域级能量路由器基本位于负荷中心,对于换流站的占地面积、环境友好性提出了更高要求。为进一步减少能量路由器站的占地面积,缩短工程建设工期,研发团队在充分考虑电气绝缘间距和运行维护便利需求的基础上,完成了能量路由器站设备的紧凑化设计和无人值守运维设计。
能量路由器站直流场设备均采用集装箱预制舱安装方式,包括2个110千伏交流端口的集装箱三联预制舱、1个中低压交流和直流端口的集装箱五联预制舱;交流场开关设备采用户外新型高压开关设备(HGIS),桥臂电抗器采用层叠式布置,进一步缩小了设备体积;控制系统和辅助系统设备采用2个符合公司标准的三型集装箱预制舱,一次、二次电缆均采用地沟布置,整体布局合理,外形美观。
在无人值守运维设计上,能量路由器站所有的控制和监视设备均位于站内的控制保护舱和协调控制舱内,可就地或远程实现设备的控制和监视功能,从而实现能量路由器站投运后无人值守。能量路由器投运至今,随州供电公司调控中心可以在当地随时监测和调取能量路由器站的所有设备状态以及切换运行方式,大幅度减少了运维能量路由器站的人力、物力和财力。
1、描述(WBST-600高压电缆护层故障测试仪拥有雄厚的技术力量)
1.1简介
高压电缆故障定位电桥是基于MURRAY电桥原理而设计,适用于敷设后各种电线电缆的击穿点及没有击穿但绝缘电阻值偏低的缺陷点的定位,也是高压电缆护套故障定位*有效的方法。当然,也 可用于电缆厂内各种线缆缺陷点的定位。
设备采用开关电源构成高压恒流源,空载电压15kV,短路电流30mA。采用高灵敏度放大器及检流计指 示平衡,与比例电位器构成平衡电桥,整体置于高电位。测量电缆为特别设计的双芯高压橡皮电缆,四 端电阻测量法避免了引线电阻引入的误差,电缆通过编织屏蔽层可靠接地,面板上操作钮处于地电位, 通过绝缘杆操作电桥。高压恒流源和电桥集成在一个便携式铝合金箱内。因此,该设备电压高、重量轻、 操作方便、使用可靠。
1.2功能
具有三种功能:
1、直流耐压试验
可输出 0~15kV 直流电压,可用于电缆直流耐压试验。
2、烧穿故障点
烧穿及降低高阻及闪络型故障点的电阻。
3、故障预定位
利用电桥原理进行预定位,四端电阻测量法避免了引线电阻引入的误差。
1.3适用用户
高压电缆外护套故障测距仪特别适用于:
1、敷设后电缆的高阻击穿点,特别是难以烧成低阻的线性高阻击穿点如电缆中间接头的线性高阻击穿。
2、闪络型击穿点,击穿后恒流源能维持电弧,有稳定电流通过电桥,电桥有足够的灵敏度。
3、电桥法仅仅要求线芯电阻的均匀性。因此,PVC聚氯乙烯绝缘电缆(波特性不好),没有良导体回流的电缆,超高压电缆金属护套缺陷点,仅有钢铠装的电缆的故障定位,只能用电桥法定位。
4、尚未击穿,但电阻偏低的缺陷点,如用兆欧表发现电缆阻值较低,但运行电压下不击穿的绝缘缺陷点。
由于上述特点高压电缆故障定位电桥为下述几类用户所青睐:
1、从事专业定位的电缆修试队伍:如大中型供电局及大型用电企业的电缆修试班。绝大部分的电缆击穿点均可用高压电缆故障定位电桥迅速找到大致的击穿位置。与波反射法及定点仪配合使用,各取所长,使定位更快更可靠。
2、小型用户:如小型供电局及中型用电企业。电缆不多,一般走向清楚,不太长,故障次数有限,若配齐一套波反射法定位仪,价格高,对使用人员的素质和经验要求较高,不是*佳选择。选用高压电缆故障定位电桥价格较低,操作方便,能应付日常需要,是较好的选择。
3、电缆生产厂:在厂内,可用作各种线缆击穿点的定位,选配数字电容表,可找出断线点。该设备重量轻,便于携带至现场为电缆用户作定位服务。
1.4技术指标(WBST-600高压电缆护层故障测试仪拥有雄厚的技术力量)
直流输出 0~15kV
短路电流 30mA
定位比例精度 (0.2%L+1)m
重量 10kg
体积 38cm_36cm_27cm
工作电源 工频220V 15%
1.5供货清单(WBST-600高压电缆护层故障测试仪拥有雄厚的技术力量)
2、面板说明(WBST-600高压电缆护层故障测试仪拥有雄厚的技术力量)
1、接地柱:为仪器外壳及电桥电气可靠接地点,通过专用接地线与地相连,使用过程中务必可靠接地,以确保人身保障。
2、保险丝:5A(5_20)。
3、电源插座:AC220V_15%。
4、测量电缆首端:红色测量夹头。
5、测量电缆末端:黑色测量夹头。
6、输出电流表:单位mA。
7、输出电压表:单位kV。
8、电源指示:电源开关打开时,指示灯亮。否则应检查电源和保险丝。
9、工作指示:电压调节旋钮逆时针旋转到底,零位合闸后,指示灯亮,方可输出高压。
10、电源开关:左为开,右为关。
11、电压预置:显示输出电压范围,同时选择了显示量程。
12、高压调节:高压调节电位器带零位开关,逆时针调节到底能听到咔嗒一声,完成零位合闸,顺时针调节为升压,逆时针调节为降压。
13、检流计:指示平衡情况。
14、电池开关/灵敏度调节旋钮:有三个用途:(1)检流计电池的开关。(2)在“关”位置时,短路比例电位器,断开检流计,防止冲击电流损坏电桥。(3)调节检流计灵敏度。顺时针旋转,灵敏度由 小到大。在调节过程中,应逐步提高灵敏度,使指针偏转对‰旋钮的微小调节敏感。
15、定位千分比调节:为电桥电阻调节旋钮,外圈数字对应为100‰,内圈对应为10‰、1‰。读数P‰=外圈数字+内圈数字,如图2(a)读数应为720‰,图2(b)读数应为315‰。
16、检流计调零:调节表头电气零位。内置放大器、连接线接触电势、热电势、空间电场都可能使指针偏离零位。应在连线完成,电源打开未升压时调零,可消除上述干扰。
17、更换电池:打开电池开关后,若调零时检流计不动作,可能是电池电量不足,应更换9V方块电池。方法如下:先关闭电源,并对测量电缆可靠放电,仪器侧放,打开底部小门,拧开高压桥体下部的 尼龙盖,拉出电池,更换。应注意,电桥工作时电池处于高电位,因此,换好的电池及电池连接线 一定要放回原位,拧好尼龙盖。
3、操作说明(WBST-600高压电缆护层故障测试仪拥有雄厚的技术力量)
3.1定位原理
利用Murray电桥对击穿点定位是经典的办法,方便而准确。电桥法的依据是线芯(或屏蔽层)电阻均 匀,与长度成比例。下图3为一典型用法。
钢带铠装三芯电力电缆,长度为L,B相线芯对钢带在L1处击穿。借助于A相作为辅助线,使用低阻值连线短路N、Y 两端。L 1段电缆线芯电阻为R1,L2段电缆及A相电缆线芯的电阻为R2。与定位电桥构成Murray电桥回路。其电路原理如图4。
比例臂电阻与10圈刻度盘相连,电阻比例P可由刻度盘读取,因此:
由此可见,只要电桥有一定的灵敏度并能平衡,电桥法定位简单而精准。
3.2测量步骤
故障线芯AB,辅助线芯CD,线芯截面相同,长度均为L,测量端距离故障点为Lx。 测量夹红、黑夹子分别接至电缆线芯A、C两端,在远端通过专用C型夹短路线短路D、B两端。
1、用万用表,摇表或其它耐压设备确认电缆击穿状态,记录各芯的对地绝缘电阻或击穿残压等数值。
2、记录待测电缆长度、型号、截面等参数,沿电缆敷设路径巡视,在远端短路故障电缆及辅助电缆出线端子,留一人在远端监护,以免高压伤人。
3、接线。仪器接地端可靠接至定位现场接地体。测量首端(红夹)接在故障电缆线芯,首端电缆上金属鳄鱼夹子跟仪器接地端相连,应与被测电缆钢带(或铜屏蔽)可靠连接,测量末端(黑夹)接辅 助电缆线芯。接地棒接在仪器接地端。内置的高压源输出“-”极性高压,通过比例电位器,经二 根测量电缆,加在电缆线芯上,流过击穿点,经钢带和金属鳄鱼夹流入仪器接地端。可见,金属鳄 鱼夹与钢带(或铜屏蔽)可靠相连很重要,否则没有电流回路,无法定位。
4、电源接在AC220V。仪器内电源插座接地点悬空,因此,不要求电源线可靠接地。
5、电桥调零。电池开关置“开”,旋转“调零”钮,(若指针偏左,顺时针旋转,指针偏右,逆时针旋转)。使检流计指零。此后电池开关及时置“关”。确认电池开关置“关”!在“关”位置时,不但关 闭检流计放大器电池,同时短路比例电位器,断开检流计。可避免升压燃弧阶段的脉冲电流损坏电 桥。因此,在电流稳定前,电池开关必须处于“关”位置。
6、选择适当的电压范围。对于低电压电缆,选“5kV”档,可防止误操作使电压过高。
7、升压。打开“电源开关”,电源指示灯亮。“高压调节”钮逆时针到底,零位启动,工作指示灯亮。
8、顺时针缓慢旋转“高压调节”钮,观察电压表及电流表,直到电流表超过10mA。若电流不稳定,可继续升高电压,保持一段时间,形成稳定电弧或导电区,使测试过程的电流稳定。
9、平衡调节。顺时针旋转“电池开关/灵敏度”钮,逐档增大灵敏度,至检流计有明显偏转但不过度,旋转“‰”刻度盘,使检流计指零(若指针偏左,顺时针旋转,指针偏右,逆时针旋转)。逐档提高 灵敏度,使指针偏转对“‰”旋钮的微小调节敏感即可。
10、记下此时“‰”刻度盘的读数P1‰,应有P1≤500。
11、降电压,关闭“电源开关”,放电,并经另一人确认。将测量钳交换位置,(回流接地C形夹不必更换位置)。重复步骤(4)至(10)得到另一读数P2,应有P1+P2=1000。该过程能避免读数及测量钳使用上的错误,P1+P2不必追求完全等于1000。在990及1010之间均属正常。在高压合闸,无电流输出,当前灵敏度档重复调零能得到更为准确的比例。
12、计算故障点的位置
Lx = 2 _ L _ P1‰
应特别注意公式中的“2”,因为辅助电缆使参与计算的电缆延长了一倍。
4、使用经验
4.1测量钳的正确使用
在预定位故障点时,测量钳的红黑夹子分别接至比例电位器及检流计,相当于双臂电桥的P、C端,显然 不能直接短路,铝芯表面有氧化层,应砂光处理。
4.2使用该设备完成耐压试验
该设备可以用于耐压试验,与一般耐压设备不同,它不能过流跳闸,应观察电压及电流表的读数判断绝 缘状况。接线应注意:两个测量钳同时输出高压,应同时接至电缆线芯,金属屏蔽或其它线芯接仪器地。
4.3如何使电流稳定
电桥在稳定电流下才能平衡。升压前,灵敏度档应位于“关”位置,短路电桥,防止冲击电流损坏检流 计放大板。开始升压时,高阻击穿点往往有爬电,使电流波动,保持*大电流几分钟,电流将趋于稳定。 某些闪络型故障,需要更长时间,故障点经频频放电,形成电弧后,电流达到稳定。使用脉冲源和定位 电桥同时加压,可提高烧穿功率,缩短电流稳定时间。
4.4电桥的灵敏度选择
充分理解影响灵敏度的因素对测试有帮助:
1、通过电桥的电流越大,灵敏度越高。
2、电缆导体电阻越大,电桥获得的灵敏度越高,即细而长的电缆灵敏度较高,粗而短的电缆灵敏度较 低。对于截面大,长度短的电缆,应尽可能增大电流,选用较高的灵敏度档位。
3、对于相间击穿的定位,选择截面较小的线芯为桥臂,灵敏度较高。
4.5辅助线芯截面不同时的换算
可以采用不同截面的线芯作为辅助电缆,计算时,应将辅助电缆折算至故障电缆的长度。如故障截面为 Sx,辅助电缆为S,则上述公式变为:
X = P1‰×(1+Sx/S)×L
可以直观理解为:辅助电缆愈细,电阻愈大,相当于更长的故障电缆。
4.6成盘电缆的定位
高压电缆故障定位电桥为敷设现场定位而设计,当然也可以用于出厂试验中的缺陷点定位。区别是测量钳夹在电缆的两端,不必使用低阻短路线,没有辅助电缆参与平衡,计算公式不能有“2”, 如下:
X = L× P1‰
4.7铜带,钢带能作为桥臂吗
电桥定位的精度有赖于导体电阻均匀,电缆厂不一定焊接铜带、钢带搭接头。铜带接触电阻小,对定位 精度影响很小。钢带应小心,可能会引入较大误差,应该心中有数,尽量避免利用钢带定位。
4.8架空电缆的定位
架空电缆通常为单芯,仅有绝缘层,浸水耐压试验发现的缺陷点同样可以定位,与其它成盘电缆唯依不同在于,接地极为水。可将仪器地接至水池的接地点,或用铜带放在水中,作为接地极。
4.9多点缺陷点定位
这里,有必要区分缺陷点是低阻点还是击穿点。理论上,定位比例指向多个漏电流构成的重心,因此电 桥法不能定位多个故障点。运行电缆上,故障过电压浪涌偶尔能造成电缆多处弱点依次击穿,导致多点 击穿。但多个击穿点情况很难一致,随着直流电压上升,*弱的点先击穿,流过绝大多数电流,根据比 例计算的位置十分靠近该点。剔除该点,再找下一点。实际中碰到两个以上点同时流过较大电流的机会 很少,可以说,碰到多点击穿导致定位不准的几率,比中大奖更小,因此,不必担心电桥难以定位多点 击穿。没有击穿的低阻点,随电压升高,大部分转化为击穿点。特殊的低阻点,如成批材料绝缘不好, 定位比例总是在 50%左右,值得警惕。
4.10相间击穿定位
与前文例子的区别仅仅为,电流应通过另一线芯流回电桥,因此,相间击穿的另一线芯应接至电桥地。 实际中可能是:相间击穿及相与屏蔽击穿共存,不妨将其它线芯及屏蔽都接地,结果大多为:相间击穿 及相与屏蔽击穿是同一点。
4.11无良好绝缘辅助线芯的处理
如4.10条中类似,可能所有相间及屏蔽都击穿了,找不到辅助电缆相。方法是:用万用表挑一相绝缘电 阻较大的为辅助电缆,道理与多点击穿类似,不难想通。如都烧成一体,为金属性短路,只能利用平行 敷设的其它电缆了,还不行,只能放临时辅助电缆。考虑到该套仪器中其它方法可用,*终束手无策的 机会并不多 ,从提高定 位技术的角度讲,我们很希望碰到定不出来的故障,可惜至今还没有这样的挑战。
4.12单芯电缆绝缘缺陷点定位
单芯电缆通常为35kV及以上的高压电缆,定位接线如下图6。
与多芯电缆*大的不同是,外界干扰影响电桥平衡的可能性加大,短接M、X及N、Y点的金属护套很有 效,参考第4.14条。高压电缆间距较大,应选配大长度短接线。
4.13高压电缆护套缺陷点定位
高压电缆外护套故障测距仪是定位电缆护套缺陷点*有效的方法,接线如图7。详细内容请参考本公司的 相关资料。
4.14 干扰类型及排除方法
对大截面电缆精准定位,需要高灵敏度的检流计,本仪器消除了高压源对电桥检流计的干扰,大大衰减 了外界干扰讯信号。但仍可能有一些干扰影响电桥平衡。单芯电缆定位的工频干扰。故障电缆附近,通常有其它线路在运行,流过工频大电流。故障电缆芯与辅 助电缆包含的面积愈大,磁场感应干扰也愈大。多芯电缆由于包含的面积小,加上金属护层的屏蔽作用, 不影响平衡。但是定位高压电缆,可能干扰太大,无法平衡。以高压电缆护套缺陷点定位为例,改善方 法为:将故障相及辅助相的线芯两端接地,或在两端将线芯彼此短接,形成反相磁场,效果明显。
4.15断芯电缆定位
不能定位断芯故障是高压电桥法*大的不足。好在完全的断路在电力电缆中不多见,完全断路可以选配 数字电容表解决,方法见第4.16条。断线故障定位*好用HDTDR波反射法定位仪。 运行故障中,大电流烧熔线芯及金属屏蔽层,断芯不完全,往往伴随着短路,电桥法可以定位。小截面 铝芯电缆,制造中已部分拉断线芯,但内半导电层还贯通,半导电层作为电桥电阻的一部分,使定位比 例不正确。定位比例接近0‰或999‰。
用万用表测量线芯电阻,可以判断是否为断芯故障。断芯时,定位比例不正确。波反射法是更好的方法。 绕包的铜带或钢带不易断路,可尝试用金属屏蔽作为桥臂定位。
除了在能量路由器技术和设计建造上开展更新,国网智研院还在随州广水科技示范工程建设中围绕数字化绝缘栅双极型晶体管(IGBT)驱动芯片技术、自主化直流电压互感器技术、低成本中压直流断路器技术开展了系列更新,推动直流电容器核心零部件国产化批量应用。这些工作对支撑新型电力系统建设和促进能源高质量发展具有重要意义。
IGBT是电力电子装备的核心部件,而驱动器通过控制门极电荷调节IGBT动态特性,并承担故障检测和保护功能,相当于IGBT的“大脑”。国网智研院研究团队研发了数字化驱动器,可通过算法实现控制保护逻辑,动态调节IGBT开关特性,同时快速检测多种故障,实现分类精准保护。能量路由器换流阀中100%采用了具有自主知识产权的国产化IGBT驱动器,并且第1次使用了团队自主研发的驱动器核心芯片——数字型IGBT驱动芯片,为后续国产IGBT驱动器在直流输电领域的规模化应用打下了坚实基础。
电压互感器是用于电压测量的关键设备。特高压直流、柔性直流、风机变流器等电力电子设备在电网中的广泛应用,对更宽频带、更高精度的电压测量提出了要求。研发团队在国内率先成功研制出宽频高精度电压互感器系列产品,系列产品中的±20千伏宽频电压互感器应用于随州广水科技示范工程。该装置具有测量精度高、运行可靠性好、环境适应性强等优点,广泛适用于交直流输电线路及配电网电压测量、交直流行波测距、柔性直流电网快速保护、风电并网谐振检测、电能质量监测等多种场景。
针对高压直流断路器成本高、体积大、不利于推广的问题,研发团队于2021年完成了有源振荡直流断路器原理样机开发与性能测试,2022年5月联合许继集团开发出20千伏/3毫秒/15千安有源振荡直流断路器产品,与混合式技术水平相比,制造成本降低了40%,已在随州广水科技示范工程能量路由器中应用。有源振荡直流断路器方案在电流、电压方面均具备良好扩展特性,可应用于更高电压等级、更大短路电流的中高压直流输配电工程,全方位提升了直流断路器技术与经济性能。
此外,随州广水科技示范工程还实现了国产化电容器在电力系统直流输电领域中的第1次批量应用。研发团队联合宁波海融、赛晶嘉善等电力电子电容器厂家,开展多项技术攻关,从电容器国产化膜的生产工艺、检验手段、试验标准以及绝缘散热性能要求等多个维度优化,大幅度提升了国产化直流电容器的产品性能和质量。
扬州万宝转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。