风电、光伏受天气变化影响大,这就要对天气变化进行准确预测,适时分析其对未来风电、光伏发电的影响。特别是要做好灾害性天气预测预报。
应对风光的波动性和不稳定性需要大量灵活性资源。在非化石能源占比不高的当下,化石能源依然发挥着灵活性调节的支撑作用。煤电通过灵活性改造已具备一定的调节能力,天然气发电也具备灵活性,配合常规水电、抽水蓄能和新型储能的加快发展,可以满足当前和之后一段时间电网运行的需要。我们的研究表明,在实现“双碳”目标的推动下,未来我国以风电光伏为主的可再生能源消费在电力消费中的比重可能高达80%以上,仅依靠少量煤电和天然气发电、常规水电和抽水蓄能、各种新型储能等措施,已无法满足电力系统运行必需的灵活性需求。一种办法是对存量燃煤电厂进行改造,逐渐增加绿色燃料的比例,如生物质燃料、绿氢及绿氢制成的绿氨等,在提供绿色电力的同时,对电网运行提供灵活性。绿氢燃气发电也是一种可行的办法,其机组的快速启停可为电网提供更强的灵活调节能力。
近年来恶劣气候事件频发,导致国内外一些地区电力供应发生中断,这就要求电力系统事故发生后能够快速恢复正常运行,使电网具有较强的韧性。在电网规划层面,需要以比较大的区域电网为基础来规划主网,比如以大区或省级电网,或者以京津冀、长三角、粤港澳大湾区等国家的级别经济区电网为基础,在区域内建立比较坚强的超特高压电力主干网络,在此基础上,基于“余缺互济、应急互备”的原则建设区域电网之间的电力交换能力,避免电网连锁故障的大范围蔓延。在区域内部,统筹规划好外来电、本地骨干电源,部署好储能等各类灵活性资源,布局完善的可靠稳定措施,大力发展分布式新能源,建立多能互补的新型配电系统等。
针对大量电力电子设备接入电力系统带来的惯量下降、宽频振荡等稳定性相关问题,可以通过发展构网型控制技术来解决,包括构网型的装置、控制器及控制方法等,使各类新能源发电和新型储能等接入交流电网的电力电子装置基本上具备同步发电机的功能和特性,与传统水电、火电、核电等同步电源一起,构成电力系统稳定性和可靠性的支撑力量。

1 概述(WBDRC-3矿用电网电容电流分析仪有着过硬的产品质量)
目前,我国电力系统的电源中性点一般是不直接接地的,所以当线路单相接地时流过故障点的电流实际是线路对地电容产生的电容电流。据统计,电力系统的故障很大程度是由于线路单相接地时电容电流过大导致起弧且电弧无法自行熄弧引起的。因此,我国的电力规程规定当10kV和35kV系统电容电流分别大于30A和10A时,应装设消弧线圈以补偿电容电流,这就要求对的电容电流进行测量以做决定。另外,电力系统的对地电容和PT的参数配合会产生PT铁磁谐振过电压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量电力系统的对地电容值。
传统的测量电容电流的方法有单相金属接地的直接法、外加电容间接测量法等,这些方法都要接触到一次设备,因而存在试验危险、操作繁杂,工作效率低等缺点。进而出现了在PT二次侧注入信号法测量电网电容电流;与传统测量方法相比,该方法测量过程中,测试仪无需和一次侧直接相连,因而试验不存在危险性,无需做繁杂的保障工作和等待冗长的调度命令,只需将测量线接于PT的开口三角端子就可以测量出电容电流的数据。从PT开口三角处注入的是微弱的异频测试信号,所以既不会对继电保护和PT本身产生任何影响,又避开了50Hz的工频干扰信号。
我公司在上一代基于PT二次侧注入信号法测试仪的基础上,经过重新研发设计,开发出电容电流测试仪。采用全新硬件结构和速度更快的ARM处理器及AD转换器,内置全新的全数字变频逆变电源,效率高、发热量小、体积小、重量轻,更加便于携带和现场测试。在任何时刻(包括测量过程中)都可准确测量零序3U0电压,从而便于用户判断系统工作状态;并且在测试过程中,如果零序3U0电压过高可自动停止测量过程。
该测试仪采用工业彩色液晶屏(强光下可读)、中文菜单、人机交互更加友好,并且具备U盘存储和数据打印等功能。接线简单、测试速度快、测试稳定性和数据准确性高,大大减轻了试验人员的劳动强度,提高了工作效率。
2 测量原理(WBDRC-3矿用电网电容电流分析仪有着过硬的产品质量)
电容电流测试仪是从PT 开口三角侧来测量系统的电容电流的。其测量原理如图1所示。
在图1中,从PT二次开口三角处注入不同频率的电流信号(频率非50Hz,目的是为了消除工频信号的干扰),在PT高压侧A、B、C三相感应出3个电流方向相同的电流信号,此电流为零序电流,因此它在电源和负荷侧均不能流通,只能通过PT和对地电容形成回路,所以图1又可简化为图2。
根据图2的物理模型就可建立相应的数学模型,通过检测测量信号就可以测量出三相对地电容值3C0,再根据公式I=3ωCOUφ(Uφ为被测系统的相电压)计算出系统的电容电流。
3 功能及特点(WBDRC-3矿���电网电容电流分析仪有着过硬的产品质量)
3.1 测量范围更宽,测试速度更快。
3.2 支持3PT连接方式、两种4PT连接方式、1PT连接方式现场电容电流测量。
3.3 工业级彩色液晶显示屏,分辨率320×240点阵,强光下可读。
3.4 人机交互界面更加友好:
(1)对于一些重要的操作及参数设置,显示其提示信息和帮助说明。
(2)测量结果及相关参数显示和打印更加详细,便于用户日后分析。
(3)选择PT连接方式时,可显示各种PT连接方式下的接线原理图,便于用户判别现场PT连接方式及测试线连接位置。
(4)屏幕顶部状态栏实时显示优盘插入状态,对未连接的设备进行操作时,显示相应的未连接提示信息。
3.5 实时测量和显示零序3U0电压值,便于用户判断系统工作状态;并且,在测量工程中如果发现零序3U0电压过高,可自动停止测量过程。
3.6 具备多重零序3U0过压保护电路,测试仪输出端可耐受AC100V 50HZ电压而不损坏。
3.7 内置全数字变频逆变电源,具有输出频率准确、输出电流可调、输出效率高、发热量小、体积小、重量轻、长时间工作稳定等特点。
3.8 具备输出短路保护功能。
3.9 具备实时时钟,可实时显示当前时间和日期;测量结果包括测量日期及时间。
3.10 测量数据存储方式分为本机存储和优盘存储,其中本机存储可存储测量数据150条,并且本机存储可转存至优盘;优盘存储数据格式为Word格式,可直接在电脑上编辑打印。
3.11 热敏打印机打印功能,快速、无声。
3.12 体积小、重量轻,方便携带使用。
4 技术指标(WBDRC-3矿用电网电容电流分析仪有着过硬的产品质量)
4.1 电容电流测量
4.1.1 测量范围:0.3μF~200μF 1A~400A
4.1.2 准确度: ±(读数×5%+2字)
4.1.3 分辨率: 0.3~9.999(0.001) 10~99.99(0.01) 100~999.9(0.1)
≥1000(1)
4.1.4 电压等级:0.1KV~99.9KV连续可调
4.2 零序3U0电压测量
4.2.1 测量范围:1V~100V AC 50HZ
4.2.2 准确度: ±(读数×1%+10字)
4.2.3 分辨率: 1~9.999(0.001) 10~99.99(0.01)
4.3 使用条件及外形
4.3.1 工作电源:AC100-240VAC 0.8A, 50/60Hz
4.3.2 仪器重量:4.5Kg
4.3.3 仪器体积:320mm(长)×270mm(宽)×150mm(高)
4.3.4 使用温度:-10℃~50℃
4.3.5 相对湿度:<90%,不结露
5 面板及各部件功能介绍(WBDRC-3矿用电网电容电流分析仪有着过硬的产品质量)
5.1 电流输出:接测试线一端的弹棒,测试线另一端接PT二次侧。
5.2 保险管: 电流输出保险管,串联在测试回路中,熔断电流2A。
5.3 显示屏: 工业级320×240点阵彩色液晶屏,带LED背光,显示操作菜单和测试结果。
5.4 按键: 操作仪器用。 “↑↓”为“上下”键,选择移动或修改数据;“←→”为“左右”键,选择移动或修改数据;“确认”键,确认当前操作;“取消”键,放弃当前操作。
5.5 优盘接口:外接优盘用,用来存储测试数据,请使用FAT或FAT32格式的U盘。在存储过程中,严禁拨出优盘。
5.6 打印机: 打印测试结果。
5.7 接地端子:仪器必须可靠接地。现场接地点可能有油漆或锈蚀,必须清理干净。
5.8 电源开关:整机电源开关。
5.9 电源输入:交流AC220V电源输入。
6.变压器中性点异频信号注入法
6.1 测量方法说明及测量特点
变压器中性点异频信号注入法与补偿电容器组中性点异频信号注入法类似,具备补偿电容组中性点异频信号注入法的所有特点。
注:变压器中性点异频信号注入法,需要一个外置单相电磁式电压互感器,为了提高测量精度,可选用精度较高的电压互感器,电压互感器变比为
(UL电压互感器额定高压);测试仪的参数设置中“PT方式”应选择“1PT”。
6.2 测量原理
变压器中性点异频信号注入法测量原理如见图4。
图4中:
PT:外接单相电磁式电压互感器
Tr:变压器35kV侧绕组,或是10kV系统的接地变,O为变压器中性点
Ca、Cb、Cc:系统三相对地电容
AX、ax: PT的一、二次绕组,电压互感器变比为
(UL电压互感器额定高压)
6.3 测量步骤
6.3.1 查看不接地系统的接线方式和运行方式,系统所有线路均已投入。
6.3.2 现场已配置消弧线圈的,根据接线方式和运行方式,退出与被测系统有电气联系的所有消弧线圈。
6.3.3 外置单相电压互感器置于绝缘垫上,高压尾端、低压尾端和外壳分别一点接地。
6.3.4 将电容电流测试仪的电流输出端与单相电压互感器二次绕组相连。仪器置于绝缘垫上,且与互感器的距离不小于2m(10kV)和3m(35kV),电容电流测试仪外壳应可靠接地。
6.3.5将单根耐压电缆一端与外置的单相电压互感器高压端相连。在变压器中性点隔离开关处,利用绝缘操作杆将电缆的另一端与该变压器中性点相连。无中性点隔离开关的变压器可在其它操作方便处将电缆与中性点相连。连接部位需可靠接触。
6.3.6 单相电压互感器周围设置围栏,围栏与互感器的距离不小于0.7m(10kV)、1m(35kV),向外悬挂“止步、高压危险”标示牌。
6.3.7 测试人员位于绝缘垫上开始测试。
盐城射阳县供电公司在用户侧微电网建设方面持续发力,积极推广绿色低碳发展理念,射阳公司在洋马镇贺东社区等场所建成示范级微电网,实时查看风电、光伏等设备功率,还能运用需求响应模块对用电设备进行远程控制,实时展示着发用电设备的参数,这是综合能源零碳管理平台在射阳地区的第1次落地实践。
近年来,随着能源需求的持续增长,如何有效管理和利用能源成为了各行各业共同面临的重大挑战。正是在这样的背景下,能源管理系统平台应运而生,成为企业提升能源使用效率、助力企业转型发展的重要工具。能源管理系统平台是一个综合性的信息化管理平台,它集成了数据采集、监控、分析与优化等多重功能。借助物联网、大数据、云计算等先进技术,该平台能够对各类能源设施进行实时、全方位的监测与控制,从而帮助企业实现能源的精细化管理和高效利用。盐城射阳县供电公司加快完善新型电力系统,推动更多用户侧微电网接入平台,同时深耕平台功能应用,通过分析历史运行数据不断优化微电网运行控制策略,进一步助力企业降本增效;他们通过深入的数据分析,有针对性地采用“能源优化、配网运行优化、管理优化”等措施,细化管理环节,为企业提供了宝贵的节能减碳策略建议,助力企业在绿色低碳的道路上稳步前行,推动风电、光伏、储能、充电桩、空调等设备互补运行;比如,射阳公司海河供电所微电网建成投运一年以来,已累计发出绿电11.89万千瓦时,其中自用电量8.15万千瓦时,就地消纳比例接近70%,累计减少碳排放84.41吨,获得了良好的经济效益、社会效益和环境效益。
综合能源零碳管理这一平台的出现,不仅极大地提升了能源使用的透明度,还通过深入的数据分析,为企业提供了宝贵的节能减碳策略建议。我们要象盐城射阳县供电公司那样,充分调动源网荷储资源,实现用户与电网友好互动,让能源管理系统平台赋能企业绿色转型与效能提升的新引擎只有这样,才能助力企业在绿色低碳的道路上稳步前行。
扬州万宝转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。