热流仪原理
一、适用范围: 本设备适用于各类半导体芯片、闪存Flash/EMMC、PCB 电路板IC、光通讯(如收发器 transceiver 高低温测试、SFP 光模块高低温测试等)、电子行业等进行IC 特性分析、高低温循环测试、温度冲击测试、失效分析等可靠性试验。
温馨提示:外部尺寸请依*终设计确认三视图为准。
二、产品特点:
1、试验系统结构设计先进合理,制造工艺规范,外观美观、大方。
2、该试验箱主要功能元器件均采用世界品牌配置(含金量高)、技术原理先进可靠、噪音与节能得到*佳控制——其性能可替代国外同类产品。
3、零部件的配套与组装匹配性好,主要功能元器件均采用具有国际先进水平的原装进口件,提高了产品的**性和可靠性,能保证用户长时间、高频率的使用要求。
4、设备具有良好的操作性、维护性、良好的温度稳定性及持久性、良好的**性能、不污染环境及危害人身健康。
三、工作原理:
1、试验机输出气流罩将被测试品罩住,形成一个较密闭空间的测试腔,试验机输出的高温或低温气流,使被测试品表面温度发生剧烈变化,从而完成相应的高低温冲击试验;2、可针对众多元器件中的某一单个IC或其它元件,将其隔离出来单独进行高低温冲击,而不影响周边其它器件,与传统冷热冲击试验箱相比,温变变化冲击速率更快
工作模式:A)2路主空气管输出,由分布头分为8路供气,带2套1拖8 系统
B) 2种检测模式 Air Mode 和 DUT Mode
测试和循环于高温/常温/低温(或者不要常温)
制冷方式:采用风冷式HFC环保制冷剂复叠系统,*低温度可达-70℃
噪音:≤65dB(A声级)
条件:风冷式环境温度在+23℃时
温度范围:-80℃~+250℃
温度转换速度:-55℃~+125℃/-125℃~-55℃≤10s
温度控制范围:-70℃至+100℃
冲击温度范围:-40℃至+80℃
温度偏差:测试品恒定在-40℃时,温度偏差为±1℃
冲击气流量:1.9~8.5L/s(分为8路,每路0.23~1.06 L/s)连续气流
温变速率降:RT+10℃降至-40℃≤60s
试品表面温度:RT+10℃降至-40℃约1分钟试品表面温度达到,气体温度与样品温度可选择测控
试品:带2套1拖8 系统,金属封装PCB板模块8片;
前端空气经干燥过滤器处理,产品测试区及附近无明显结露现象。设备可以连续运转不需进行除霜。
满足试验标准:1.GB/T 2423.1-2008 试验A:低温试验方法;
2.GB/T 2423.2-2008 试验B:高温试验方法;
3.GB/T2423.22-2012 试验N: 温度变化试验方法
4. GJB/150.3-2009 高温试验
5. GJB/150.4-2009 低温试验
6. GJB/150.5-2009 温度冲击试验
四、系统特点:
1)先进节能设计:采用PID+PWM原理的VRF技术(电子膨胀阀根据热能工况冷媒流量伺服控制); 采用PID+PWM原理的VRF(制冷剂流量控制)技术实现低温节能运行(电子膨胀阀根据热能工况冷媒流量伺服控制技术):低温工作状态,加热器不参与工作,通过PID+PWM调节制冷剂流量和流向,对制冷管道、冷旁通管道、热旁通管道三向流量调节,实现对工作室温度的自动恒定。此方式在低温工况下,可实现降低30%的能耗。该技术基于丹麦Danfoss公司的ETS系列电子膨胀阀,可适用于对不同制冷量要求时对制冷量进行平滑调节,即满足在不同降温速率要求时,实现压缩机制冷量调节;
2)制冷工艺: 在制冷系统设计中充分考虑了对压缩机的保护措施,如压缩机吸排气压力自动保护功能,该功能使压缩机的运行温度保持在正常温度范围内,避免压缩机过冷或过热,以便延长压缩机的使用寿命。在制冷系统管道焊接上采用上等无氧铜管气体保护焊接方式,此方式避免了传统焊接方式造成在铜管内壁产生氧化物对制冷系统及压缩机的损害。在制冷系统设计中充分考虑了机组运行时的减振措施,如压缩机安装弹簧减振器,同时在制冷管道上采用增加圆弧弯的方式,避免因运行振动和温度变化引起的管道变形和泄漏,从而提高整个制冷系统的可靠性
3) 节能措施: 采用了以下有效的能量调节措施,如:制冷系统的制冷量调节、气液旁路调节、蒸发温度调节等,在任何低温温度点恒温时,无需加热平衡,运行功率可降低至一半,使制冷系统的运行费用和故障率下降到较为经济的状态。
4) 压缩机回气温度调节: 自动调节压缩机回气温度,使压缩机的温度保持在正常范围内,避免压缩机过冷和过热
5) 减振措施: 1、压缩机:弹簧减振。2、制冷系统:特种橡胶垫整体二次减振;制冷系统管路采用增加R和弯头的方式避免因振动和温度的变化引起的铜管的变型,从而造成制冷系统管路破裂
6) 降噪:制冷机箱:采用波浪状的特种消音海绵吸音