可程序直流电源供应器系列 ______使用手册

固纬料号: 82STB32020M0

可程序直流电源供应器

PST-3201/3202

版权声明

这本手册所含之全部文字与图片是受到智能财产权的保护,版权属 固纬电子实业股份有限公司所拥有。在这本手册内之任何章节及图 片不得在没有固纬电子实业股份有限公司授权之下做出任何之复 制、重组、或是翻译成其它之语文。

这本手册所叙述之内容与图片在印制之前已经完全校正过。但因固 纬电子实业股份有限公司不断地改善产品之品质、特性,固纬电子 实业股份有限公司有权在未来修改产品之规格、特性及保养维修步 骤时,不必事前通知。

固纬电子实业股份有限公司

台湾省台北县新店市宝中路 95 号之 11.

Declaration of Conformity

We

GOOD WILL INSTRUMENT CO., LTD. No. 95-11, Pao-Chung Rd., Hsin-Tien City, Taipei Hsien, Taiwan

declares that the below mentioned product

PST-3201, PST-3202

are herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Law of Member States relating to Electromagnetic Compatibility (89/366/EEC, 92/31/EEC, 93/68/EEC) and Low Voltage Equipment Directive (73/23/EEC).

For the evaluation regarding the Electromagnetic Compatibility and Low Voltage Equipment Directive, the following standards were applied:

EMC

EN 61326-1: Electrical equipment for measurement, control and laboratory use — EMC requirements (1997+A1: 1998)			
Conducted and Radiated Emissions EN 55011: 1991+A1: 1997+A2: 1996	Electrostatic Discharge EN 61000-4-2: 1995		
Current Harmonic EN 61000-3-2: 1995+A1: 1998+A2: 1998 +A14: 2000	Radiated Immunity EN 61000-4-3: 1996		
Voltage Fluctuation EN 61000-3-3: 1995	Electrical Fast Transients EN 61000-4-4: 1995		
	Surge Immunity EN 61000-4-5: 1995		
	Conducted Susceptibility EN 61000-4-6: 1996		
	Voltage Dips/ Interrupts EN 61000-4-11: 1994		

Safety

Low Voltage Equipment Directive 73/23/EEC & amended by 93/68/EEC
EN 61010-1: 1993+A2: 1995
IEC 61010-1: 1990+A2: 1995
USA : UL 3111-1 – First Edition, June 1994
Canada: CSA-C22.2 No. 1010.1-92

使用手册

索	引 页次
1.	安全标志与讯号1
2.	产品介绍3
3.	产品规格4
4.	使用前之注意事项6
5.	面板介绍7
6.	操作使用说明11
7.	一般维修20
8.	系统方块图与原理说明27

可程序直流电源供应器系列 使用手册			
1.安全标志与讯号:			
为防范机器受损,请注意以下标志及讯号可能出现在仪器上或标 示于使用说明书上:			
警告:警告声明确认可能引起受伤或失去生命的状况。			
注意:注意声明确认可能引起产品或其它财产损失的状。			
人 高电压危险			
参考说明书的说明。			
(上) 保护导体端子			
 (大地)接地端子			
/ → 面框或底座端子			

使用手册

● 安全注意事项:

(1).搬运或储藏,使用时应避免重压或震动。

- (2).无专业技术人员处理时,在损坏之情况下,不应随便自行拆
 - 机,以免影响其特性上的改变。
- (3).注意使用电源 230V/115V 及保险丝之规格指示。
- (4).本机使用三线性电源,可确保本机的外壳与电源的良好接地保 护状态。
- (5).避免外加±10V以上之电压于信号输出端。
- (6).操作环境范围为0 ~40 ;并应避免于高温、高湿度及磁场 干扰之场所操作。

使用手册

2.产品介绍

PST 系列可程序电源供应器,整个系统完全由微处理机(MPU)控制,可以轻易的利用通讯接口(RS-232 或 GPIB)与计算机(PC)联机, 来满足使用者对自动测试及自动控制方面的需求。

电压/电流的控制完全由一 12 位的数字模拟转换器来负责控制, 所以可得到较高分辨率及精确度,由于系统的数字化,资料输入完 全由键盘控制,快速精确且方便。

电压/电流的调整,全由软件校正,没有人为上的误差,使得仪器 更加的准确。

过电压(OVP),过电流(OCP)保护,全由软件设定,由硬件侦测,能快速及精确的达到保护功能,以保障使用者生命及仪器的安全使用。

附加特性

- 全数字化可程序接口具高分辨率。
- 192 × 128 LCD 显示器,可同时显示多组设定及量测结果(可变更显示模式)。
- 窗口化直觉式智能型操作接口,方便使用者操作。
- 高稳定度、低飘移量。
- 过电压、过电流、过温度保护。
- 智能型风扇控制(随着输出功率变换)。
- 内建蜂鸣器作为警告提示。
- 校正流程循序化。
- 全新面板设计及缩小体积设计 1/2Rack Size。
- 飞梭旋钮(微调与粗调)。
- 100 组设定储存。
- 操作模式:串联模式、并联模式。
- IEEE-488.2 和 SCPI 指令兼容。
- 0.1 秒的定时器为输出工作回路(Auto Step running)。
- 符合 UL、CSA、CE、LVD 安全规范。

使用手册

3. 产品规格

规格		PST-3201	PST-3202	
	电压	0~32V × 3	0~32V × 2, 0~6V × 1	
输出	电流	0~1A × 3	0~2A × 2, 0~5A × 1	
	过电压保护	0~33V × 3	0~33V × 2, 0~7V × 1	
岛裁调节家	电压	3mV(5mV额定电流	>3.0A)	
贝轧间卫卒	电流	3mA(5mA额定电流	>3.0A)	
由酒调节家	电压	3mV		
电脉响口平	电流	3mA		
	电压	10mV(20mV额定电压>3	86V)	
分辨率	电流	1mA(2mA 额定电流>3.	5A)	
	过电压保护	10mV(20mV额定电压>3	86V)	
设定准确度	电压	0.05%+10mV(+20mV	额定电压>36V)	
以	电流	0.1%+5mA(+10mA额)	定电压>3.5A)	
(25 ± 5)	过电压保护	0.05%+10mV(+20mV	额定电压>36V)	
汝 浊 乃 喝 吉	由压	涟波 1mVrms/3mVp-p		
$(20 \text{Hz} \sim 20 \text{MHz})$		噪声 2mVrms/30mVp-j	p	
	电流	3mArms(5mArms额	定电流>3.0A)	
温度系数	电压	100ppm+3mV		
(0~40)	电流	100ppm+3mA		
诗同值分辨家	电压	10mV(20mV额定电压>3	36V)	
读口值力加中	电流	1mA(2mA额定电流>3.0	A)	
反应时间	电压上升	10%~90% 100ms		
及应时间	电压下降	90%~10% 100ms (10)% 额定负载)	
读回值	电压	100ppm+10mV(+20m)	V额定电压>36V)	
温度系数	电流	150ppm+10mA		
湮移	电压	100ppm+10mV(+20m	V额定电压>36V)	
/赤ッシ	电流	150ppm+10mA		

可程序直流电源供应器系列

使用手册

史联回步竭作	串联同步误差	0.1%+20mV	
中状门少饼正	串联(负载)	20mV	
	设定准确度	电压 0.05%+10mV(+20mV额定电压>36V) 电流 0.1%+10mA 过电压保护 0.05%+10mV	
并联同步操作	负载调节率	电压 3mV(5mV额定电流>3.0A) 电流 6mA	
	电源调节率	电压 3mV 电流 6mA	
记忆	1	储存/呼叫0~99点	
	设定时间	0.1秒到99分59秒(最大99分59秒共100组)	
定时器	分辨率	0.1秒	
	功能	自动执行模式(Auto Step running)	
接口	RS232(标准配备), GPIB接口(选购)	
使用电源	交流100V, 120V, 220V ± 10%, 230V +10%/-6% 50/60Hz.		
从形尼寸	面积	230(宽)×140(高)×380(长)mm.	
ני אושריע	重量	10公斤	
	在室内使用,	高达海拔 2000 m,	
操作环境	环境温度0~	-40 ,相对湿度 85%(最大),	
	安装等级: Ⅲ,	污染程度:2。	
储存温度 与湿度	-10 ~70 ,7	70%(最大)湿度。	
附件	电源线 操作手册 测试线		

使用手册

4.使用前之注意事项

4-1. 包装之拆卸

此产品在出厂前,已经通过全面品质检验及测试。在收到仪器时, 请拆箱并检查是否在运输途中遭受损坏。假如有的话,通知运输公 司及出口商处理。

4-2. 检查电源电压

此仪器可使用以下列表所标示的电源电压。插电前先确定后面板电 压选择器设定在与电压相符的位置,以免损坏仪器。

警告:为避免电击,电源线必须接地。

电压与保险丝的对应表:

型号	电源电压	范围	保险丝	电源电压	范围	保险丝
PST-3201	100V	90-110V	T3A 250V	220V	198-242V	T1.6A 250V
PST-3202	120V	108-132V	T5A 250V	230V	216-253V	T2.5A 250V

警告:为避免电线走火,只能更换以上所规定特定的 250V 保险丝,并在更换时,先拔掉电源线的插头,以免受伤。

4-3.操作环境

标准的仪器操作的环境温度在 0°到 40°C (32°到 104°F)的范围 超过 这个标准,可能会损坏电路。

> 注意:为避免损坏仪器,请勿在超过40 温度的环境下 使用此仪器。

使用手册

_ _ . . .

5.面板介绍

1.	Power Switch	按下此键接通电源。
2.	Display	显示设定电压电流值,输出电压电流值,设定
	1	及输出状态。
3.	+Output Terminal	正输出端子。
4.	-Output Terminal	负输出端子。
5.	GND Terminal	Ground 端子,与CASE 相接。
6.	Rotary Encoder	飞梭旋纽。
7.	V Set (CH1)	设定输出电压。按[SHIFT][CH1]可切换至
		CHANNEL1 作组态设定。
8	I Set (CH2)	设定输出电流。按[SHIFT][CH2]可切换至
0.	1.500 (0112)	CHANNEL 2 作组态设定。
9	OVP Set (CH3)	设定过电压保护值。按[SHIFT][CH3]可切换至
		CHANNEL 3 作组态设定。
10	F/C (STEP)	切换飞梭旋纽输入为粗调或微调、按
10.		SHIFTI(STEP)进入 STEP 设定
11	Recall (Store)	呼叫出下一组记忆资料 按[SHIFT][STORE]
11.	(btore)	进入记忆资料储存编辑
12	Recall (Recall)	呼叫出上一组记忆资料 按[SHIFT][RECALL]
12.	(Recuit)	呼叫出指定之记忆位置资料或设定自动执
		行范围及次数
13	ΔΗΤΟ	
15.	(PARA/INDEP)	
	(IARA/IRDEI)	備心哭回复到单独输出模式
14	DELAV	设定自动执行模式时由压伸滚输出时间一按
14.	$(TD \land CK / INDEDT)$	
	(TRACK/INDEFT)	
15	OCD	
15.	OUP DESET	
16	(UVP KESEI)	[SHIF1][UVPKESE1] 淯际型电压体扩展式。 选择头等三尺功能支拉键
16.	SHIFT	匹佯刃弟————————————————————————————————————

使用手册

17.	Local (GPIB/RS-232)	清除 REMOTE 控制模式,改由面板控制。按 [SHIFT][GPIB/RS-232]进入GPIB或RS-232选择设 定。
18.	Contrast	按[SHIFT][CONTRAST]进入显示画面对比调整。
19.	•)))	按[SHIFT][····)] BUZZER ON/OFF 切换。
20.	W	按[SHIFT][W]可切换显示画面字体大小。
21.	Ι	按[SHIFT]后,在 SHIFT 状态下按 I 使输出递增 一 STEP 电流值。
	Ι	按[SHIFT]后,在 SHIFT 状态下按 I 使输出递减 一 STEP 电流值。
	V	按[SHIFT]后,在 SHIFT 状态下按 V 使输出递增 一 STEP 电压值。
	V	按[SHIFT]后,在 SHIFT 状态下按 V 使输出递减 一 STEP 电压值。
22.	Output	打开或关闭输出。
23.	0~9, " [•] ", ENTER	数值输入。
24.	AC Power Socket	AC 电源输入端。
25.	AC Select Switch	切换输入的电压值为 100V、120V、220V 或 230V
		(50/60HZ) _e
26. 27	Cooling Fan	冷却风扇。
& 28	Interface	GPIB 或 RS-232C 通讯接口。

可程序直流电源供应器系列

使用手册

● 前面板图:

使用手册

● 后面板图:

6. 操作使用说明:

本仪器中所出现的电压和电流的单位均采用伏特及安培。

6-1. 输出电压/电流设定

首先,选取欲设定之信道:按[SHIFT][CHx]。此时设定光标会 切换至 CHx (x = 1、2 或 3)。

输出电压设定:

方式 1:按[V SET][电压值(数字键)][ENTER], 设定输出电压。 方式 2:按[V SET][电压值(旋钮输入)], 立即变更设定输出电压。

> 最后,按下[ENTER]结束电压设定。当使用此方式时输 出电压会立即随着旋钮输入值而变更。

例如:设定输出电压为 32.00V。

按[V SET][3][2][.][0][0][ENTER]。

输出电流设定:

方式 1: 按[I SET][电流值(数字键)][ENTER], 设定输出电流。

方式 2: 按[I SET][电流值(旋钮输入)], 立即变更设定输出电流。 最后,按下[ENTER]结束电流设定。当使用此方式时输 使用手册

出电流会立即随着旋钮输入值而变更。

使用手册

例如:设定输出电流为 1.000A。

按[I SET][1][.][0][0][0][ENTER]。 当输出端流过负载的电流,若超过电流设定值时,仪器操作在定 电流模式(C.C.Mode)反之,若未超过电流设定值,则操作在定电 压模式(C.V.Mode)。

6-2. 过电压(OVP)/过电流(OCP)保护设定

首先,选取欲设定之信道:按[SHIFT][CHx]。此时设定光标会 切换至 CHx (x = 1、2 或 3)

过电压(Over Voltage Protection)设定:

- 方式 1:按[OVP SET][电压值(数字键)][ENTER],设定 OVP 的电 压准位。
- 方式 2:按[OVP SET][电压值(旋钮输入)], 立即变更设定 OVP 的电压准位。最后,按下[ENTER]结束 OVP 的电压准位。 当使用此方式时 OVP 的电压准位会立即随着旋钮输入 值而变更。
- 例如: 设定 OVP 的电压为 33.00V。

按[OVP SET][3][3][.][0][0][ENTER]。

清除 OVP 状态:

当输出电压超过 OVP 所设定的电压 33.00V 时,仪器立即停止 输出 (OUTPUT OFF),进入 OVP 保护模式,面板会显示"Over voltage protection …",此时按下[SHIFT][OVP RESET]可清除 OVP 状态,恢复先前之状态。

过电流(Over Current Protection)设定:

按 OCP 可分别设定各信道的 OCP 为 ON 或 OFF,当 OCP 设为 ON 时,输出电流等于或超过设定的电流值时,仪器会立即停止 输出(OUTPUT OFF),进入 OCP 保护模式,面板会显示"Over

使用手册

current protection ... ", 按[OCP]清除 OCP 状态,恢复先前之状态。

6-3. 电压/电流步阶(STEP)设定

按[SHIFT][STEP] 即进入选单画面,且使用旋钮切换光标至欲 修改之设定选项后,直接使用数字键输入[设定数值] 且按下 [ENTER],最后使用旋钮切换光标至[SAVE],且按[ENTER]结 束并储存。当欲取消本次设定时,可使用旋钮切换光标至[Exit], 且按[ENTER]结束未储存。

例如:设定 Channel 1 的 STEP 电压为 1.00V 及 STEP 电流为 0.10A。

按[SHIFT][STEP] 即进入选单画面,且使用旋钮切换光 标至 CH1 Voltage 直接输入[1][.][0][0][ENTER],再选取 CH1 Current 直接输入[0][.][1][0][0][ENTER],最后使用 旋钮切换光标至[SAVE]且按[ENTER]结束并储存。

- 注: CH1 CH2 CH3 的 STEP 电压及 STEP 电流可在同一窗口 中完成设定。
- 6-4. 资料储存(Storing)与呼叫(Recalling)设定

资料储存(Storing)设定

按[SHIFT][STORE] 即进入选单画面,且使用旋钮切换光标至 STORE 后按[ENTER]进入内存储存画面,之后直接使用数字键 可程序直流电源供应器系列

使用手册

输入[储存(store)地址数值]且按下[ENTER]后结束并储存。

例如:储存目前仪器设定状态于储存地址"00"。

按[SHIFT][STORE] 即进入选单画面,且使用旋钮切换光 标至 STORE 后按[ENTER]进入且直接输入[0][0][ENTER] 后即完成储存设定。

资料呼叫(Recalling)设定

按[SHIFT][RECALL] 即进入选单画面,且使用旋钮切换光标至 Recall Memory 后按[ENTER]进入内存呼叫画面,之后直接使用 数字键输入[呼叫(recall)地址数值]且按下[ENTER]后结束。

Rec. Rec. Exit	all Memory all Range t	INDEP 0.00	Fine)0 A	C٧
СН2 СН3	33.00 6.000)V 0.00)V 0.00	00A 00A	CV CV
SET Volt. Curr O.V.P. O.C.P.	30.00V 3.000A 32.00V 0FF	CH2 30.00V 3.000A 32.00V OFF	CH 6.0 5.0 8.0 0F	3 00V 00A 00V F

例如:呼叫出储存地址"00"至目前仪器设定状态。

按[SHIFT][RECALL] 即进入选单画面,且使用旋钮切换 光标至 Recall Memory 后按[ENTER]进入且直接输入 [0][0][ENTER] 后即完成呼叫设定。

6-5. 资料编辑(Edit)与拷贝(Copy)设定

资料编辑(Edit) 设定

按[SHIFT][STORE] 即进入选单画面,且使用旋钮切换光标至

使用手册

Edit 后按[ENTER]进入内存编辑(edit)画面,之后直接使用数字 键输入[编辑(edit)地址数值] 且按下[ENTER]即可进入编辑选单 画面,此时使用旋钮切换光标至欲编辑(edit)的设定项目且按 [ENTER]进入编辑(edit)输入画面,最后使用旋钮切换光标至欲 修改之设定选项后,直接使用数字键输入[设定数值或状态 (on/off)] 且按下[ENTER]。最后,修改完成后使用旋钮切换光 标至 End 且按[ENTER]即完成,此时回到上一页选单可重复以 上步骤做其它设定修改,当修改完成后应使用旋钮切换光标至 [SAVE]且按[ENTER]结束并储存。当欲取消本次设定时,可使 用旋钮切换光标至[Exit] 且按[ENTER]结束未储存。

Channa Volta9e Current 2 0.V.P. 3 0.C.P.	11 9.000A 2.00V OFF)	Fine)0A)0A	CV CV
SET CH1 Volt. 30.00V Curr. 3.000A 0.U.P. 32.00V 0.C.P. OFF	CH2 30.00V 3.000A 32.00V 0FF	CH 6.0 5.0 8.0	3 00V 00A 00V F

拷贝(Copy)设定

按[SHIFT][STORE] 即进入选单画面,且使用旋钮切换光标至拷 贝(Copy)后按[ENTER]进入拷贝(Copy)设定画面,之后使用旋钮 切换光标至欲修改之设定选项后,直接使用数字键输入[拷贝 (copy)地址数值] 且按下[ENTER]。当修改完成后应使用旋钮切 换光标至[SAVE]且按[ENTER]结束并储存。当欲取消本次设定 时,可使用旋钮切换光标至[Exit] 且按[ENTER]结束未储存。 注: 需注意 Source 与 Target 的地址不能有重复现象,且 End 值

必须大于 Start 值。

使用手册

Source Start Source End Target Start Target End (Save) (E)	01 01 01 01 01 01 00	Fine 0A 0A	C¥ C¥
CH3 6.000)¥ 0.00	0A	C٧
SET CHO Volt. 30.00V Curr. 2.000A O.V.P. 32.00V O.C.P. OFF	CH2 30.00V 2.000A 32.00V 0FF	CH 6.0 5.0 8.0 OF	3 00V 00A 00V F

6-6. 自动循序执行

延迟(Delay)时间设定

按[DELAY] 即进入选单画面,且使用旋钮切换光标至欲设定项 目后,直接使用数字键输入[设定数值] 且按下[ENTER]。最后, 使用旋钮切换光标至 End 且按[ENTER]结束并储存。当欲取消 本次设定时,可使用旋钮切换光标至[Exit] 且按[ENTER]结束未 储存。当使用本设定后,需再将此 Delay 设定储存于指定储存 (Store)的位置(步骤如同 5.4 数据储存设定)。需注意,此储存步 骤会同时将目前仪器的设定状态储存于指定储存(Store)的位置。

Mir Sec (E	nute O cond O nd (Exi		Fine 00A	C٧
СН2 СН3	33.0 6.00	0.0 V 0.0 0V 0.0	00A 00A	CV CV
SET Volt. Curr. O.V.P. O.C.P.	2.000 32.000 32.00V 0FF	CH2 30.00 2.000 32.00 0FF	CH 6.0 9 5.0 9 8.0 0 F	3 00V 00A 00V F

自动执行范围设定

按[SHIFT][RECALL] 即进入选单画面,且使用旋钮切换光标至 Recall Range 后,且按下[ENTER]。此时进入自动执行范围设定 画面,且使用旋钮切换光标至欲修改设定项目后,直接使用数 字键输入[自动执行范围设定数值]且按下[ENTER]。当修改完 成后应使用旋钮切换光标至[SAVE]且按[ENTER]结束并储存。

使用手册

当欲取消本次设定时,可使用旋钮切换光标至[Exit] 且按 [ENTER]结束未储存。

注: 当重复次数输入"00"时,代表无限次数巡回设定。

6-7. 并联模式操作

按[SHIFT][PARA]即立即进入并联操作模式。

当操作在此模式时其输出电压、电流是以 OUT2(channel 2)为主

控。 其输出电压可设定范围与 OUT2(channel 2)同,但输出电 流可设定范围为 OUT2(channel 2)的两倍。

例如: (1) OUT1(channel 1): 电压 = 10V 电流 = 1A。 (2) OUT2(channel 2): 电压 = 20V 电流 = 2A。

(3) 按[SHIFT][PARA]进入并联模式。

(4) 输出电压 = 20V 输出电流 = 4A。

6-8. TRACK 模式操作

按[SHIFT][TRACK] 即立即进入 TRACK 操作模式。 当操作在此模式时其输出电压是以 OUT2(channel 2)为主控。其 输出电压可设定范围与 OUT2(channel 2)同,但电流可分别设定 其输出值。

例如:(1) OUT1(channel 1):电压 = 10V 电流 = 2A。
(2) OUT2(channel 2):电压 = 20V 电流 = 2A。
(3) 按[SHIFT][TRACK]进入 TRACK 模式。
(4) 输出电压 = 40V 输出电流 = 2A。

使用手册

6-9. GPIB/RS-232 接口设定

按[SHIFT][GPIB/RS-232] 即进入选单画面,且使用旋钮切换光 标至 Interface,且按下[ENTER]后。此时进入接口选择设定画面, 且使用旋钮切换光标至欲修改设定项目,且按下[ENTER]。尔 后使用旋钮切换光标至 Address 或 Baud Rate 设定区域后,当欲 修改 Address 则直接使用数字键输入[Address 设定数值] 且按下 [ENTER]或当欲修改 Baud Rate 则先按下[ENTER]后,使用旋钮 切换光标至欲修改设定数值后按下[ENTER]。最后使用旋钮切 换光标至 Save 后按[ENTER]后结束并储存。当欲取消本次设定 时,可使用旋钮切换光标至[Exit] 且按[ENTER]结束未储存。

例如:(1) 欲设定 GPIB 为通讯接口,且 Address 为 10:按
[SHIFT][GPIB/RS-232] 即进入选单画面,且使用旋
钮切换光标至 Interface,且按下[ENTER]后。进入接
口选单画面后使用旋钮切换光标至 GPIB 后按下
[ENTER],尔后使用旋钮切换光标至 Address 后直接
使用数字键输入[Address 设定数值] 且按下
[ENTER]。最后使用旋钮切换光标至 Save,且按下
[ENTER]后结束并储存。

(2) 欲设定 RS-232 为通讯接口,且 Baud Rate 为 9600, 按[SHIFT][GPIB/RS-232] 即进入选单画面,且使用旋钮 切换光标至 Interface,且按下[ENTER]后。进入接口选单 画面后使用旋钮切换光标至 RS-232 后按下[ENTER],尔

使用手册

后使用旋钮切换光标至 Baud Rate 则先按下[ENTER]后, 使用旋钮切换光标至 9600 后按下[ENTER]。最后使用旋 钮切换光标至 Save,且按下[ENTER]后结束并储存。

6-10. 最大输出设定值

MODEL	PST-3201			PST-3202		
ITEM	CH1	CH2	CH3	CH1	CH2	CH3
输出电压	33V	33V	33V	33V	33V	7V
输出电流	1.1A	1.1A	1.1A	2.1A	2.1A	5.2A
过电压	34V	34V	34V	34V	34V	8V
步阶电压	10V	10V	10V	10V	10V	1V
步阶电流	0.5A	0.5A	0.5A	1A	1A	2.5A
延迟时间		99'59"			99'59"	
记忆组数	100		100			

6-11. 测试导线选用表

퓆믁	PST-3201			PST-3202			
,	CH1	CH2	CH3		CH1	CH2	CH3
已化	GTL-105	GTL-105	GTL-105	G	ГL-105	GTL-105	GTL-104
守线	(电流 3A)	(电流 3A)	(电流 3A)	(电	l流 3A)	(电流 3A)	(电流 4A-10A)

注: PST-3202 当并联输出使用时, 需采用 GTL-104 (电流 4A-10A)的测试导线。

6-12. GPIB 和 RS232 接口的设定

PST-系列可程序电源供应器可使用 GPIB/RS232/LOCAL Control 来设定或读取 GPIB 和 RS232 接口。详细的说明请参考 PST/PSS/PSH 系列 Programmer Manual.

可程序直流电源供应器系列

使用手册

7.一般维修

为避免电击,以下的操作指示仅适用于专业人员。

7-1.保险丝的值和型式

假如保险丝烧掉了,机器就不能动作。先找出保险丝损坏的原因 并作修正,然后替换以正确的值和型式的保险丝。请参考 4-2 电 压与保险丝的对应表。

警告:为防止危险,请务必更换 250V 的保险丝,更换 前必须先切断电源。

7-2. 调整与校正

- 1) 准备工作(条件):
 - a. 调整前预热 30 分钟以上。
 - b. 调整时环境温度 23 ± 5° C、湿度 RH80% 以下

2) 输出校正步骤

使用手册

【步骤 1.0】

按下[SHIFT][.]后,窗口会立即显示 Password 输入窗口,此时利 用数字键输入密码(视机种而异 PST-3202 => 3202, PST-3201 => 3201)后按下[ENTER]键。当输入错误且未按下[ENTER]键时,可使 用旋钮清除输入数值。

【步骤 2.0】

当进入 Calibration 选单后可使用旋钮切换光标至欲校正的信道 选项,且按下[ENTER]键。当选定校正选项后,此时即可依序进行 电压、电流、过电压校正步骤。

【步骤 3.0】电压校正步骤

当选定信道后可使用旋钮切换光标至 Voltage 后按下[ENTER]即进入电压校正程序。

【步骤 3.1】

此时依窗口显示的步骤做适当的量测设定完成后,再次按下 [ENTER]即进入电压(MIN.)校正数值输入窗口。

【步骤 3.2】

直接使用数字键输入[量测的电压值] 且按下[ENTER](当输入 错误且未按下[ENTER]键时,可使用旋钮清除输入数值) 即完成电压 (MIN.) 量测数值输入。PS.此时选用的 DMM 至少需要能解析至小数 点以下第三位(即 1mV),且在输入数值时取小数点以下第二位(10mV) 可程序直流电源供应器系列

使用手册

有效值输入,以下自行四舍五入。

【步骤 3.3】

再次按下[ENTER]即进入电压(MAX.)校正调整窗口。

【步骤 3.4】

此时依窗口显示的步骤做适当的量测读值调整完成后,按下 [ENTER]即完成电压(MAX.)调整。此时选用的 DMM 至少需要能解 析至小数点以下第三位(即 1mV)。

注: 当调整时, 其量测读值误差的范围最大为±0.005V。

接续着进行电流校正...

【步骤 4.0】电流校正步骤

使用旋钮切换光标至 Current 后按下[ENTER]即进入电流校正程序。

【步骤 4.1】

此时依窗口显示的步骤做适当的量测设定完成后,再次按下 [ENTER]即进入电流(MAX.)校正数值输入窗口。

【步骤 4.2】

直接使用数字键输入[量测的电流值] 且按下[ENTER](当输入 错误且未按下[ENTER]键时,可使用旋钮清除输入数值) 即完成电流 (MAX.) 量测数值输入。PS.此时选用的 DMM 至少需要能解析至小 数点以下第四位(即 0.1mA),且在输入数值时取小数点以下第三位

可程序直流电源供应器系列

使用手册

(1mA)有效值输入,以下自行四舍五入。

【步骤 4.3】

再次按下[ENTER]即进入电流(MIN.)校正数值输入窗口。 【步骤 4.4】

直接使用数字键输入[量测的电流值] 且按下[ENTER](当输入 错误且未按下[ENTER]键时,可使用旋钮清除输入数值) 即完成电流 (MIN.) 量测数值输入。PS.此时选用的 DMM 至少需要能解析至小数 点以下第四位(即 0.1mA),且在输入数值时取小数点以下第三位 (1mA)有效值输入,以下自行四舍五入。

接续着进行过电压(O.V.P.)校正...

可程序直流电源供应器系列

使用手册

【步骤 5.0】

使用旋钮切换光标至 O.V.P.后按下[ENTER]即进入过电压 (O.V.P.)自动校正程序。

【步骤 5.1】

当 O.V.P. 自动校正程序完成后 ,使用旋钮切换光标至 End 后按下[ENTER] 离开。

注:此时, Channel 1 的校正资料仍未储存。倘若,使用者希望 只对 Channel 1 做校正,可使用旋钮切换光标至 Save 后按 下[ENTER]结束并储存。当欲取消本次校正时,可使用旋钮 切换光标至[Exit] 且按[ENTER]结束未储存。同理,使用者 也可只对 Channel 2 和 Channel 3 校正并储存。

【步骤 6.0】

重复上述程序可陆续完成 CH2, CH3 校正步骤...

【步骤 7.0】并联(Parallel)校正步骤

使用旋钮切换光标至并联(Parallel)后按下[ENTER]即进入并联 (Parallel)电流校正程序。

【步骤 7.1】

此时依窗口显示的步骤做适当的量测设定完成后,再次按下

使用手册

[ENTER]即进入并联(Parallel)电流校正数值运算程序。

【步骤 7.2】

当完成并联(Parallel)电流校正数值运算程序,且依窗口显示的步骤做适当的量测设定完成后,按下[ENTER]即进入并联(Parallel)电流 (MAX.)校正数值输入窗口。

【步骤 7.3】

直接使用数字键输入[量测的并联(Parallel)电流值]且按下 [ENTER](当输入错误且未按下[ENTER]键时,可使用旋钮清除输入 数值)即完成并联(Parallel)电流(MAX.)量测数值输入。PS.此时选用的 DMM 至少需要能解析至小数点以下第四位(即 0.1mA),且在输入数 值时取小数点以下第三位(1mA)有效值输入,以下自行四舍五入。 【步骤 7.4】

再次按下[ENTER]即进入并联(Parallel)电流(MIN.)校正数值输入窗口。

【步骤 7.5】

直接使用数字键输入[量测的并联(Parallel)电流值]且按下 [ENTER](当输入错误且未按下[ENTER]键时,可使用旋钮清除输入 数值)即完成并联(Parallel)电流(MIN.)量测数值输入。PS.此时选用 的 DMM 至少需要能解析至小数点以下第四位(即 0.1mA),且在输入 数值时取小数点以下第三位(1mA)有效值输入,以下自行四舍五入。

Calibration Channell Ch <mark>Cunnent</mark> Ch Cunnell Ch Cunnell Save (Exit		_{Coarse} (40) A A
<u>eus</u>	-u	•
ипо	•	•

【步骤 8.0】

使用旋钮切换光标至 Save 后按下[ENTER]结束校正(Calibration) 并储存。当欲取消本次校正时,可使用旋钮切换光标至[Exit]且按 [ENTER]结束未储存。

Calibration- Channel1 Channel2 Channel3 Paralle1 Save (Exit)	INDEP (V V	_{Coarse} (*)) A A
СНЗ	V	A
SET CH1 Volt.30.00V Curr.2.000A O.V.P.34.00V O.C.P. OFF	CH2 30.00V 2.000A 34.00V OFF	6.000V 5.000A 8.000V 0FF

7-3.清洁方法

可使用湿的布和清洁剂使仪器保持清洁。千万不可使用磨沙布或 溶解剂,以免破坏仪器的外壳。 使用手册

8. 系统方块图与原理说明

8-1. 系统方块图

上图是 PST-SERIES 系统方块图,整体架构分别由微处理机 MPU(Micro Processor Unit),数字/模拟转换电路 DAC(Digital to Analog Converter),模拟电子开关电路(Analog Switch Circuit),参考 电压电路(Reference Voltage Circuit),驱动电路(Driver Circuit),控制 电路(Control Circuit),串联/并联电路(Track / Parallel Circuit),比较 可程序直流电源供应器系列 使用手册

器(Comparator),……等方块所组合而成。

8-2. 工作原理:

本仪器各输出信道均有一组参考电压电路,输出电压约为 2.5V , 经 过 非 反 向 放 大 器 TL074 输 出 约 为 2.5(1+R314/(R315+Vr))=2.5(1+12.4K/(7.68K+Vr)) , Vr=0~500, 首先我们取用中间值则可换算出上式等于 6.41V .以此电压当作 DAC AD7541 的参考电压,此 AD7541 分辨率为 12Bits,因此 DAC 的分辨率为 6.41V/4095=1.56mV/bit, 所以; 当仪器操作在 C.V. Mode 时 MPU 传送 Count 值 3300(代表输出电压为 33.00V) 到 DAC,此时电压约为-1.56mVx3300=-5.148V,经模拟电子开 关输出,将此电压值经由 Sample Hold 电路输出电压约为 -5.148V, 再将此输出电压与实际输出端电压经过电压检出电路 所取样回的电压作比较,由于整个电路属于闭回路,所以输出 取样电压会追随着 Sample Hold 的参考电压,并且此比较器输出 端会输出一相对的电压值,藉由此电压值经由驱动电路来控制 整个输出电路,而得到所需的输出电压。电压检出的衰减量 A=R342/(R342+R335)=4.99K/(4.99K+27.0K) =0.156,因此输出 电压 Vout=5.148/A=5.148/0.156=33.00V。ps.当输出受材料本身 的偏移量所影响时,可利用此 Vr 做适当的调整。

当仪器操作在 C.C. Mode 时,其动作原理与 C.V. Mode 相似, MPU 传送 Count 值 2100(代表输出电流为 2.1A)到 DAC,此时 电压约为-1.56mVx2100=-3.276V,经模拟电子开关输出,将此 电压值经由 Sample Hold 电路输出电压约为-3.276V,再将此输 出电压与实际输出端经过电流检出电路所取样回的电压作比 较,由于整个电路属于闭回路,所以输出电流取样的电压会追 随着 Sample Hold 的参考电压,并且此比较器输出端会输出一相 对的电压值,藉由此电压值经由驱动电路来控制整个输出电

使用手册

路,而得到所需的输出电流。而电流检出电路主要是由差动放 大器 TL071 所组成,目的是为了能精确的检出电流取样电阻上 的 电 压 值 , 而 差 动 放 大 器 的 倍 率 A=-R355/R356=-22.0K/1.91K=-11.518,所以电流取样电阻两端 的电压=-3.276/-11.518=0.285V,因此输出电流是以此 Iout=(0.285/R374)*2=(0.285/0.3)*2=1.9A 与 2.1A 利用软件做一 倍率运算作为实际输出电流。

电压/电流的显示值,是由电压/电流检出电路所取回的电压值, 经由模拟电子开关输出至比较器,再与 DAC 输出的电压以二分 逼近法的方式得到与实际输出相同的电压值,也就是显示值。