得益于高精度和**的长期稳定性,采用扩散电阻技术的KTY系列硅传感器将成为基于负温度系数(NTC)或正温度系数(PTC)技术的传统传感器的有力替代品。
它们的主要优点是:
1. 长期稳定性;
2. 基于硅批量处理技术;
3. 近似线性的特性。
汽车应用包括油温检测、引擎冷却、车内温度控制和柴油喷射等。表1显示了恩智浦公司适用于汽车应用的系列解决方案。
表1:恩智浦公司提供的一系列硅温度传感器解决方案。
尤其在汽车应用方面,硅温度传感器技术提供了更高的可靠性和设计灵活性版权所有,而且不会增加成本。摒弃传统技术而优先采用这种技术能使工程更加顺利。
图1:“扩散电阻”器件提供圆锥形电流分布。
芯片尺寸约为500x500x240μm。芯片的上表面覆盖着二氧化硅绝缘层,上有一个直径约为20μm的金属化切割孔。整个底面都经金属化处理。
硅温度传感器可提升汽车性能标准这种排列通过晶体提供圆锥形电流分布,因而得名为“扩散电阻”。此类排列的主要优点在于,传感器电阻对制造公差的依赖程度有显著降低。
靠近金属化孔的区域决定了电阻的主要部分,因此电阻的构建独立于硅晶体的尺寸公差。扩散到金属化表层下面晶体内的n+区域则降低了金属-半导体结点处阻挡层的效应。
但这种配置与极性高度相关,并且需要径向引线封装。有时还会在安装传感器时引发一些问题,因为其极性并非总是那么明显。
要成功解决此问题,可以串联两个极性相反的传感器,如图2所示。采用这种配置后,传感器的电阻将与电流方向无关。
图2:两个极性相反的传感器的串联。
但单传感器排列在一些应用中也具备优势。例如http://www.iianews.com,结构简单的特性使得该传感器能以紧凑的SOD68(DO-34)封装进行生产。另一重要优点在于其工作温度*高可达300℃,而非硅传感器通常的150℃。
这在单传感器件用金属触点正极偏置时即可实现。*高温度之所以能提高,是因为金触点上的正电压极大地降低了上部n+扩散层中的空穴浓度。
扩散电阻技术是恩智浦半导体KTY系列硅温度传感器的基础。该技术能够进行高度**的温度测量,因为它们可以在整个温度范围内呈现真正线性的温度系数(图3)。
图3:扩散电阻传感器的线性特性(恩智浦半导体公司的KTY81/82)。
图4:不同封装提供了设计灵活性。
得益于高精度和**的长期稳定性,采用扩散电阻技术的KTY系列硅传感器将成为基于负温度系数(NTC)或正温度系数(PTC)技术的传统传感器的有力替代品。
它们的主要优点是:
1. 长期稳定性;
2. 基于硅批量处理技术;
3. 近似线性的特性。
汽车应用包括油温检测、引擎冷却、车内温度控制和柴油喷射等。表1显示了恩智浦公司适用于汽车应用的系列解决方案。
表1:恩智浦公司提供的一系列硅温度传感器解决方案。
尤其在汽车应用方面,硅温度传感器技术提供了更高的可靠性和设计灵活性版权所有,而且不会增加成本。摒弃传统技术而优先采用这种技术能使工程更加顺利。
图4:不同封装提供了设计灵活性。
得益于高精度和**的长期稳定性,采用扩散电阻技术的KTY系列硅传感器将成为基于负温度系数(NTC)或正温度系数(PTC)技术的传统传感器的有力替代品。
它们的主要优点是:
1.长期稳定性;
2.基于硅批量处理技术;
3.近似线性的特性。
汽车应用包括油温检测、引擎冷却、车内温度控制和柴油喷射等。表1显示了恩智浦公司适用于汽车应用的系列解决方案。
图4:不同封装提供了设计灵活性。
得益于高精度和**的长期稳定性,采用扩散电阻技术的KTY系列硅传感器将成为基于负温度系数(NTC)或正温度系数(PTC)技术的传统传感器的有力替代品。
它们的主要优点是:
1. 长期稳定性;
2. 基于硅批量处理技术;
3. 近似线性的特性。
汽车应用包括油温检测、引擎冷却、车内温度控制和柴油喷射等。表1显示了恩智浦公司适用于汽车应用的系列解决方案。
表1:恩智浦公司提供的一系列硅温度传感器解决方案。
尤其在汽车应用方面硅温度传感器技术提供了更高的可靠性和设计灵活性版权所有,而且不会增加成本。摒弃传统技术而优先采用这种技术能使工程更加顺利。