任何有温度的物体都会发出红外线,热像仪就是接收物体发出的红外线,通过有颜色的图片来显示被测量物表面的温度分布,根据温度的微小差异来找出温度的异常点,从而起到与维护的作用。一般也称作红外热像仪。
工作原理 红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。
仪器应用 热像仪的应用非常广泛,只要有温度差异的地方都有应用。比如:在建筑领域,检查空鼓、缺陷、瓷砖脱落、受潮、热桥等;在消防领域可以查找火源,判定事故的起因,查找烟雾中的受伤者;公安系统可以找夜间藏匿的人;汽车生产领域可以检测轮胎的行走性能、空调发热丝、发动机、排气喉等性能;医学可以检测针灸效果、早期发现鼻咽癌、乳腺癌等**;电力检查电线、连接处、快关闸、变电柜等。
电力设备的故障有多种多样,但大多数都伴有发热的现象。从红
外诊断的角度看,通常分为外部故障和内部故障。众所周知,电力系统运行中,载流导体会因为电流效应产生电阻损耗,而在电能输送的整个回路上存在数量繁多的连接件、接头或触头。在理想情况下,输电回路中的各种连接件、接头或触头接触电阻低于相连导体部分的电阻,那么,连接部位的损耗发热不会高于相邻载流导体的发热,然而一旦某些连接件、接头或触头因连接**,造成接触电阻增大,该部位就会有更多的电阻损耗和更高的温升,从而造成局部过热。此类通常属外部故障。
外部故障的特点是:局部温升高,易用红外热像仪发现,如不能及时处理,情况恶化快,易形成事故,造成损失。外部故障占故障比例较大。
所谓高电压电器设备的内部故障,主要是指封闭在固体绝缘以及设备壳体内部的电气回路故障和绝缘介质劣化引起的各种故障。由于这类故障出现在电气设备的内部,因此反映的设备外表的温升很小,通常只有几K。检测这种故障对检测设备的灵敏度要求较高。内部故障的特点是:故障比例小,温升小,危害大,对红外检测设备要求高。根据相关单位提供的长期实测数据及大量案例的综合统计,电力设备外部热缺陷一般占设备缺陷总指数的90%~93%,内部热缺陷仅占7%~10%左右。
在电力行业,很早就将热像仪运用于设备的**检修上,通过其对电气设备和线路的热缺陷进行探测,如变压器、套管、断路器、刀闸、互感器、电力电容器、避雷器、电力电缆、母线、导线、组合电器、绝缘子串、低压电器以及具有电流、电压致热效应或其他致热效应的设备的二次回路等,这对于及时发现、处理、预防重大事故的发生可以起到非常关键而有效的作用。所谓电气设备热缺陷,通常是指通过一定手段检测得到,由于其内在或外在原因所造成的的发热现象。
根据缺陷所产生的原因不同,我们通常归纳为3种:一种是长期暴露在空气中的部件,由于温度湿度的影响,或表面结垢而引起的接触**,或由于外力作用所引起的部件损伤,因而使得的导电截面积减少而产生的发热。如接头连接**,螺栓,垫圈未压紧;长期运行腐蚀氧化;大气中的活性气体、灰尘引起的腐蚀;元器件材质**,加工安装工艺不好造成导体损伤;机械振动等各种原因所造成的导体实际截面降低;负荷电流不稳或超标等。
另一类是由于电器内部本身故障,如内部连接部件接触**导致的电阻过大;绝缘材料老化、开裂、脱落;内部元件受潮,元气件损耗增大;冷却介质管路阻塞等等。
对于那些可以直接观察到的设备及元气件,红外热像仪都能够发现所有连接点的热隐患。对于那些由于被遮挡而无法直接看到的部分,则可以根据其热量传递到外面部件上的情况加以分析,从而得出结论。由于现场的实际情况千变万化,即便你通过热像仪得到了一张有热点的图片,要想作出一个**的判断,可能会受许多因素的影响。如当前的温度,风量,负荷等情况。我们可以根据不同的特点,作相关的分析,作出相应的判断如:
为保证电力生产**高效运行,对电力设备状态检修提出了更高的要求。由于状态检修主要依赖于对运行中设备的状态检测以及在线监测手段,所以,电力设备运行状态检测和在线监测在电力**生产中始终起着重要的作用。红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征,因而。采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。采用红外成像技术可开展以下电力设备状态检测与故障诊断工作。
● 高压电气设备运行状态检测与内、外中心故障诊断:
● 各类导电接头、线夹、接线桩头氧化腐蚀以及连接**缺陷;
● 各类高压开关内中心触头接触**缺陷;
● 隔离刀闸刀口与触片以及转动帽与球头结合 **缺陷;
● 各类CT一次内中心及外中心连接**缺陷、本体及油绝缘**缺陷以及内中心铁芯、线圈异常**过热陷;
● 各类PT绝缘**缺陷、缺油以及内中心铁芯、线圈异常**过热缺陷;
● 各类电容器过热、耦合电容器油绝缘**和缺油(低油位)缺陷;
● 各类避雷器内中心受潮缺陷、内中心元件老化或非线性特性异变缺陷;
● 各类绝缘瓷瓶表面污秽缺陷,零值绝缘子检测,劣化瓷瓶检测;
● 发电机运行状态检测、电刷与集电环接触状态检测、内中心过热检测;
● 电力变压器箱体异常过热,涡流过热,高、低压套管上、下两端连接**以及充油套管缺油(低油位)缺陷;
● 各类电动机轴瓦接触**以及本体内、外中心异常过热。
应用情况
输电设备
接头、绝缘子、夹板、跳线、高压线、压接套管、瓷瓶引线……
变电系统
互感器、隔离开关、空气断���器、油断路器、少油量断路器、避雷器、电容器、电抗器、变压器、总线、套管、整流器、绝缘子、线夹、阻波器……
配电系统
配电盘、开关箱、变压器、断电器、接触器、保险丝、电缆……
发电厂
发电机碳刷绕组装备、发电机、变压器、油枕、发电机馈电线、电压调节器、发电机马达控制中心电盘、UPS……
建设系统
检查外墙空鼓、剥落、屋面渗漏、管道、热桥、建筑节能研究、竣工验收等;
公路桥梁
可用于快速扫描公路裂纹、桥梁开裂、渗漏检查、沥青摊铺等;
冶金系统
用于大型高炉料面测定、热风炉的破损诊断和检修等;
高炉、钢材成型加工和热处理
焊接、铸件、模具、炼钢炉、转炉、 鱼雷车、炉壁、金属热处里(退火、回火、淬火)、冷/热轧钢板、钢卷线材等温度量测监控……
石化系统
可用于保温隔热材料的破损诊断、加热炉管的温度分布测定等;转动机械设备:马达、马达碳刷、轴承、联轴器、泵浦、汽机叶片、齿轮箱、驱动齿轮、驱动皮带、联轴器、射出成型机、柴油机、空压机……
机电系统
可用于新产品开发试验研究、大型机电设备温度分布监测等;
锅炉反应炉加热炉
炉壁、炉管、烟囱、热交换器、水泥旋窑……
产品流程设备
**阀、气体/产品管路(保温、保冷)、热交换器、冷却塔、桶槽、球槽、储存槽、空气干燥机、烘干机、冷冻器……
电子产品
PC板热分析、电子组件热传导测试、壳散热测试、电路设计、环境评估……
消防安保系统
可用于消防科研、火灾救人、安保、走私监控等;
自然科学
采光、温室效应、沙尘暴、植物、采矿等;医疗:肿瘤、甲状腺、糖尿病、非典、禽流感等;
其它
玻璃、**、塑料、造纸、纺织、包装、排污、电影广告策划……
编辑本段使用技巧
1)调整焦距
2)选择正确的测温范围
3)了解*大测量距离
4)仅仅要求生成清晰红外热图像,还是同时要求**测温?
5)工作背景单一
6)保证测量过程中仪器平稳
1)调整焦距
您可以在红外图像存储后对图像曲线进行调整,但是您无法在图像存储后改变焦距,也无法消除其他杂乱的热反射。保证**时间操作正确性将避免现场的操作失误。仔细调整焦距!如果目标上方或周围背景的过热或过冷的反射影响到目标测量的**性时,试着调整焦距或者测量方位,以减少或者消除反射影响。(FoRD的意思是:Focus焦距,Range范围,Distance距离)
2)选择正确的测温范围
您是否了解现场被测目标的测温范围?为了得到正确的温度读数,请务必设置正确的测温范围。当观察目标时,对仪器的温度跨度进行微调将得到*佳的图像质量。这也将同时会影响到温度曲线的质量和测温精度。
3)了解*大的测量距离
当您测量目标温度时,请务必了解能够得到**测温读数的*大测量距离。对于非制冷微热量型焦平面探测器,要想准确地分辨目标,通过热像仪光学系统的目标图像必须占到9个像素,或者更多。如果仪器距离目标过远,目标将会很小,测温结果将无法正确反映目标物体的真实温度,因为红外热像仪此时测量的温度平均了目标物体以及周围环境的温度。为了得到***的测量读数,请将目标物体尽量充满仪器的视场。显示足够的景物,才能够分辨出目标。与目标的距离不要小于热像仪光学系统的*小焦距,否则不能聚焦成清晰的图像。
4)仅仅要求生成清晰红外热图像,还是同时要求**测温
这之间有什么区别吗?一条量化的温度曲线可用来测量现场的温度情况,也可以用来编辑显著的温升情况。清晰的红外图像同样十分重要。但是如果在工作过程中,需要进行温度测量,并要求对目标温度进行比较和趋势分析,便需要记录所有影响**测温的目标和环境温度情况,例如发射率,环境温度,风速及风向,湿度,热反射源等等。
5)工作背景单一
例如,天气寒冷的时候,在户外进行检测工作时,你将会发现大多数目标都是接近于环境温度的。当在户外工作时,请务必考虑太阳反射和吸收对图像和测温的影响。因此,有些老型号的红外热像仪只能在晚上进行测量工作,以避免太阳反射带来的影响。
6)保证测量过程中仪器平稳
在使用低帧频的红外热像仪拍摄图像过程中,由于仪器移动可能会引起图像模糊。为了达到*好的效果,在冻结和记录图像的时候,应尽可能保证仪器平稳。当按下存储按钮时,应尽量保证轻缓和平滑。即使轻微的仪器晃动,也可能会导致图像不清晰。推荐在您胳膊下用支撑物来稳固,或将仪器放置在物体表面,或使用三脚架,尽量保持稳定。
仪器选购
1、什么样的像素满足您的要求?
320*240=76,800?
在12米处测量的*小尺寸是1*1cm
160*120=19,200?
在12米处测量的*小尺寸是2*2cm
2、是否需要定量检测?
红外热像仪有两种用途:
1、热成像
2、测温
评价红外测温能力叫做MFOV,主要有2种:一种是MFOV 为1,另外一种MFOV为3*3。
MFOV为1时,目标完全覆盖了热像仪的像素,像素接受的辐射只来自目标,因此能准确测量目标温度。而MFOV为9时,像素接收的辐射不只来自目标,而且吸收目标旁边的和背后的辐射,就不能测得这么小目标的准确温度。
然而这只是测量的极限,根据当前的大部分FPA探测器技术,目标在探测器上*少要有 3 x3个像素才能确保准确测量,这要求检测时尽量靠近目标或选用望远镜头.如果目标成像小于3x3个像素,则热像仪显示的温度读数是目标的温度值与也成像在这3x3个像素的目标周围物体(环境)温度的平均值。3、高空间分辨率的优势
高空间分辨率能够得出准确的温度,低空间分辨率读出的温度只是发热点周围的平均温度。在定量化检测时候,温度的正确与否非常重要!
4、稳定性重复性对你是否重要?
决定红外热像仪的因素主要有3个方面:
探测器、光学器件、电气原器件,**级探测器的主要优势在哪里?
a、主要有两种探测器。氧化钒晶体和多晶硅。日本NEC热像仪采用了氧化钒晶体探测器,其自称的主要优势包括:
b、此探测器主要的优势是测温视域MFOV(Measurement FieldofView)为1,温度测量是**到1个像素点。 c、温度稳定性好。
d、使用寿命长
e、适合于远距离测试
5、是否在意报告处理的烦琐?
如果红外图像和可见光图像组合显示就减少了大量工作,同时报告自动生成也会大大减少操作时间。
6、是否需要延长曝光时间?延长曝光时间——专业照相(?)的必然选择
∑2、∑4、∑8、∑16等功能,特别在检测北立面或者阳光照不到的地方很有优势。使用了∑功能,增加了曝光时间,图像更清晰,更容易发现缺陷部位。