2023年1月6日,国家能源局发布《新型电力系统发展蓝皮书(征求意见稿)》。意见指出,到2030年,推动新能源成为发电量增量主体,装机占比超过40%,发电量占比超过20%。至2045年,新能源成为系统装机主体电源。
新能源业务的重要性不言而喻,自2021年以来,国资委在多个场合对央企新能源业务发展不合理和需要加强的地方进行了提醒,并有实际动作。
意见稿提出:附件—新型电力系统发展蓝皮书(征求意见稿)
推动多领域清洁能源电能替代,充分挖掘用户侧消纳新能源潜力。推动各领域先进电气化技术及装备发展进步并向各行业高比例渗透,交通领域大力推动新能源、氢燃料电池汽车**替代传统能源汽车,建筑领域积极推广建筑光伏一体化清洁替代。工业领域加快电炉钢、电锅炉、电窑炉、电加热等技术应用,扩大电气化终端用能设备使用比例。新能源逐步成为发电量结构主体电源,电能与氢能等二次能源深度融合利用。依托储能技术、虚拟同步机技术、长时间尺度新能源资源评估和功率预测技术、智慧集控技术等**突破,新能源普遍具备电力支撑、电力**保障、系统调节等重要功能,逐渐成为发电量结构主体电源和基础保障型电源。煤电、气电、常规水电等传统电源转型成为系统调节性电源,服务高比例新能源消纳,支撑电网**稳定运行,提供应急保障和备用容量。
电力在能源系统中的核心纽带作用充分发挥,通过电转氢、电制燃料等方式与氢能等二次能源融合利用,助力构建多种能源与电能互联互通的能源体系。增强型干热岩发电等颠覆性技术有望实现突破,新一代先进核电技术实现规模化应用,形成热堆—快堆匹配发展局面,核聚变有望进入商业化应用并提供长期稳定**的清洁能源输出,助力碳中和目标实现。
氢气作为一种新能源,氢气在化工、电子、医疗、冶金等很多领域得到广泛应用。但由于氢气分子很小,在生产、储存、运输和使用过程中易泄漏,所以在使用氢气时需要利用氢气传感器对环境中氢气的含量进行检测。
电化学氢气传感器(H2传感器)的工作原理与燃料电池相同。它们由一层薄薄的电解液隔开的阳极和阴极组成。当氢气通过电解液时,会发生可逆的化学反应,产生与气体浓度成比例的电流。电化学氢气传感器运行所需的功率非常小,其功耗在所有传感器类型中是低的。电化学氢气传感器具有灵敏度高、反应时间短、校准后重现性好、线性好、零点稳定、交叉灵敏度相对较低等特点。它们在**和过程控制应用中非常有用。电化学氢气传感器的一个主要缺点是,随着时间的推移,由于失去催化表面,灵敏度会降低。电化学氢气传感器GS+4H2:
电化学氢气传感器GS+4H2主要用于检测大气中氢气的浓度,典型应用于氢气气体变送器和各种氢气检测场合。