燃料电池耐久性开发要坚持材料与系统改进并行原则,现阶段可在原有材料基础上利用系统控制策略改进,提高车用燃料电池系统使用寿命,但一定程度上增加系统复杂性;长远考虑还要持续进行新材料的研发,终形成材料创 新、系统简化、满足商业化需求的新一代车用燃料电池技术体系。本文分享从车用燃料电池材料与系统两方面分析其衰减机理与解决对策。
车辆频繁变工况运行是引起燃料电池寿命降低的主要原因。从物理方面看,车辆在动态运行过程中由于电流载荷的瞬态变化会引起反应气压力、温度、湿度等频繁波动,导致材料本身或部件结构的机械性损伤。从化学角度看,由于动态过程载荷的变化,引起电压波动,导致材料化学衰减,尤其在启动、停车、怠速以及带有高电位的动态循环过程中材料性能会加速衰减,如催化剂的溶解与聚集、聚合物膜降解等。
因此,实现商业化燃料电池的寿命指标,可从2个层次逐步进行:一方面,通过对系统与控制策略的优化,使之避开不利条件或减少不利条件存在的时间,达到延缓衰减的目的,但系统会相对复杂,需要加入必要的传感、执行元件与相应的控制单元等;另一方面,还要持续支持新材料的发展,当能抵抗车用苛刻工况新材料的技术成熟时,系统可以进一步简化,在新材料基础上实现车用燃料电池的寿命目标。
车用燃料电池系统控制策略
动态循环工况是指车辆运行过程中由于路况不同燃料电池输出功率随载荷的变化过程。通常车用燃料电池系统是采用空压机或鼓风机供气。研究显示,燃料电池在加载瞬间,由于空压机或鼓风机的响应滞后于加载的电信号,会引起燃料电池出现短期饥饿现象,即反应气供应不能维持所需要的输出电流,造成电压瞬间过低。尤其是当燃料电池堆各单节阻力分配不完全均匀时,会造成阻力大的某一节或几节首先出现反极,在空气侧会产生氢气,造成局部热点,甚至失效。此外,动态载荷循环工况也会引起燃料电池电位在0.5~0.9 V之间频繁变化,在车辆5500h的运行寿命内,车用燃料电池要承受高达30万次电位动态循环,这种电位频繁变化,会使催化剂及炭载体加速衰减,因此需要针对动态工况采用一定的控制策略减缓衰减。
采用二次电池、超级电容器等储能装置与燃料电池构建电- 电混合动力,既可减小燃料电池输出功率变化速率,又可以避免燃料电池载荷的大幅度波动。这样使燃料电池在相对稳定工况下工作,避免了加载瞬间由于空气饥饿引起的电压波动,减缓由于运行过程中的频繁变载引起的电位扫描导致的催化剂的加速衰减。
车用燃料电池关键材料
材料创 新是取得燃料电池耐久性的解决方案。国内外主要从电催化剂及载体、聚合物膜、膜电极组件以及双极板等燃料电池关键材料入手,进行高耐久性材料的研究。
在高稳定性催化剂研究方面,主要从Pt/C催化剂的改进与新型催化剂研究两方面进行研究与探索。目前采用的Pt/C电催化剂稳定性欠佳,在燃料电池动电位扫描下会产生溶解、聚集、流失等现象,导致活性比表面积减少。