关键词:废水处理 化学需氧量COD 高锰酸钾 重铬酸钾
前言
我国不仅水资源短缺,而且还伴随着日益严重的水环境污染问题。石油化工生产耗水量大,生产过程中产生的废水量也很大,既浪费资源又污染环境,给水体造成极大的危害。所谓水污染是指排入水体的污染物超过了该物质在水体中的本底含量和水体的自净能力,破坏了水体原有用途的程度。工业废水是水体的*主要污染源,它量大面广,由于受产品、原料、药剂、工艺流程、设备构造、操作条件等多因素的综合影响,所含的污染物质成分多,组成极为复杂,毒性大,处理也比较困难;而且,不同时间水质也有很大差异。工业污染源是目前造成水体污染的主要来源和环保的主要防治对象,在工业生产过程中排出的废水、污水、废液等统称工业废水。废水主要指工业用冷却水;污水指与产品直接接触、受污染较重的排水;废液是指在生产工艺中流出的废液。废水处理是一个值得重视的问题。现在关于废水的处理方法有许多种,它们各有各的缺点和优点。根据不同的需要,工厂采取各自适合自己的工业废水处理工艺。COD因能对废水污染程度进行较好的量化表示,成为了现在废水测试分析的一个重要指标。
1废水处理
废水处理的目的就是用各种方法将废水中的污染物质分离出来,或将其转化为无害物质,从而使废水得到净化。废水的处理方法基本上可分为物化法和生化法两大类。物化法可进一步分为物理法、化学法和物理化学法。生化法具体可分为好氧生物法和厌氧生物法。根据废水的处理程度,通常可分为三级:上等处理 ,又叫预处理,主要是去除废水中的悬浮固体、胶体、油类挥发性物质或进行PH值调整,通常采用物化法处理,使废水初步净化,对二级处理创造适宜的条件。二级处理 ,又叫基本处理,通常采用生化法,主要是去除废水中溶解性和胶态有机污染物,它是化工废水处理的主要步骤。三级处理 ,又叫深度处理,主要是去除废水中难降解的有机物、溶解的无机物、含氮磷的营养物质等。一般采用化学物理法处理,使处理后的废水达到重复利用的要求,排放的废水不会产生富营养化作用。废水处理的工艺流程,可以由各种单元处理方法组合而成,并有多种不同的组合形式。随着处理程度的提高,治理费用也随之大大提高。所以治理废水应注意环境效益与经济效益的协调统一,所以采用的技术和流程应先进、经济、合理。
1.1废水处理的方法
1.1.1固相萃取
固相萃取由液固萃取和液相柱色谱技术相结合发展而来。从1978年美国waters公司首先将一次性固相萃取柱Sep-Pak投放市场以来,固相萃取技术得到了迅速发展。固相萃取主要用于样品的分离、纯化和浓缩,与传统的液液萃取法相比较可以提高分析物的回收率、更有效的将分析物与干扰组分分离减少样品预处理过程,操作简单,省时,省力。固相萃取是一个包括液相和固相的物理萃取过程,是一种吸附剂萃取。当样品通过填充吸附剂的一次性固相萃取柱时,由于固相对分析物的吸附力大于样品母液,所以某些分析物和杂质被保留在了固相萃取柱柱上,而其他组分则随样品母液通过了固相萃取柱,然后分别用选择性溶剂去除杂质,洗脱出分析物,从而达到分离的目的。其保留或洗脱的机制取决于被分析物与吸附剂表面的活性基团,以及被分析物与液相之间的分子间作用力。当被分析物比所存在的介质与固相之间的亲和力强时,被分析物被保留,然后用一种对被分析物亲和力更强的溶剂洗脱;当存在的介质较被分析物与固相之间亲和力更强时,则被分析物直接洗脱。样品采集后立刻用固相萃取处理不但可缩小样品体积,减少运输的麻烦,更主要的是吸附在固相萃取剂上的物质往往比存放在冰箱内的样品更稳定,不易受光、热、微生物的作用而发生各种化学物理变化。样品从吸附剂上洗脱时虽不可避免仍使��各种有机溶剂,但用量比经典方法要少得多。固相萃取设备简单,但处理大量样品时,仍是一项费时、费力的工作,因此进行SPE与其它分析技术联机自动操作的研究十分必要,文献报道也很多,如SP-HPLC、SPE-GC,在环境分析、临床与**分析中得到了广泛的应用。
1.1.2活性碳吸附
吸附法是利用吸附剂对废水中污染物的吸附作用去除污染物。吸附剂是多孔性物质,具有很大的比表面积。活性炭是目前*有效的吸附剂之一,能有效地去除废水的色度和COD,能除去水中大多数的有机污染物和某些无机物,包括某些有毒的重金属,**副产物及其前质,许多脂类和芳烃化合物,这在国内外都有研究。早在20世纪60年代初,欧美各国就开始大量使用活性炭吸附法处理城市饮用水和工业废水。目前,活性炭吸附法己经在试验验证后成为城市污水、工业废水深度处理和污染水源净化的一种有效手段。活性炭是一种非极性吸附剂,外观为暗黑色,有粒状和粉状两种。活性炭是一种很细小的炭粒,有很大的表面积,而且炭粒中还有更细小的孔-毛细管。这种毛细管具有很强的吸附能力,由于炭粒的表面积很大,所以能与气体(杂质)充分接触,当这些气体(杂质)碰到毛细管时就被吸附,起到了净化作用。活性炭颗粒的大小对吸附能力也有影响。一般来说,活性炭颗粒越小,过滤面积就越大。所以,粉末状的活性炭表面积*大,吸附效果*佳。当水质呈酸性时,活性炭对阴离子物质的吸附能力便相对减弱;当水质呈碱性时,活性炭对阳离子物质的吸附能力相对减弱。所以,水质的pH不稳定,也会影响到活性炭的吸附能力。活性炭是一种多孔性的含炭物质,活性炭的多孔结构为其提供了大的表面积,能与气体(杂质)充分接触,从而赋予了活性炭所特有的吸附活性,使其非常容易达到吸收收集杂质的目的。活性炭的物理吸附与化学吸附的双重特性,使其可以有选择地吸附空气中的各种有害物质。活性炭对污水的净化机理包括三个方面:一是活性炭颗粒及其表面生长的生物膜对废水中的悬浮物进行生物絮凝和接触絮凝,从而将其过滤去除;二是活性炭对废水中溶解性有机物的吸附和富集作用;三是活性炭表面及空隙中生长的微生物在较长的有机质停留时间内对降解速度较慢的有机物进行氧化分解,起到对活性炭的生物再生作用。
1.1.3溶剂萃取
在液体混合物溶液中加入某种溶剂,使溶液中的某些组分得到全部或部分分离的过程称为萃取。溶剂萃取法是从稀溶液中提取物质的一种有效方法。溶剂萃取又称液-液萃取,是近代分析化学中常用而又重要的分离方法之一。其优点是简单、快速、易于操作和自动化,既可萃取基体元素,又可分离富集痕量元素,由于有机合成化学的发展和所取得的成就,可供选择的萃取剂类型不断增多,因此可供选择的萃取体系也不断增多,容易达到高的选择性和萃取率。溶剂萃取的其中一相为水溶液,另一相为有机溶剂,两者互不相溶。被分离的物质从水溶液中进入有机溶剂中,即形成两层。再靠两相质量密度不同将两相分开。有机溶剂是在上层还是在下层,决定于它的相对密度是小于或大于水。如果水溶液中有溶质A和B,当有力振荡摇动时,如果有机溶剂对水溶液中的A的亲和力大于水,A便部分或全部由水溶液中进入有机溶剂中,A就被萃取,而B亲水所以仍留在水中,这样A和B就得以分离了。而往往A溶质没办法全部转入有机溶剂中,也就是说在不互溶的水相和有机相中都有A的存在。设物质A在萃取过程中分配在两相中。在一定温度下,当分配达到平衡时,物质A在两种溶剂中的活度比保持恒定,即分配定律,可用下式表示为:PD=;当浓度较低时,可用浓度代替活度,即KD=…………(1)其中KD称为分配系数。KD大,则绝大部分进入有机相,KD小则仍留在水相中,(1)式称分配定律,是溶剂萃取法的基本原理。萃取过程得到的富集了水相中某种物质或几种物质的有机相叫萃取相。经过萃取分离出某种物质或几种物质的水相叫萃余液。
1.2废水处理的新方法
1.2.1活性炭吸附-电化学上等氧化再生法处理难降解有机污染物
近年来,电化学上等氧化技术作为一种新发展的上等氧化技术因其处理效率高、操作简便、环境友好等优点,引起了极大关注。它通过电极反应产生氧化能力很强的羟基自由基有效降解污染物。研究表明,当有机污染物浓度较低时,传质将成为控制因素,导致降解过程仅发生在阳极表面而很少在溶液主体中,并且因降解中间产物的滞留导致阳极毒化。从而降低了处理效果。另一方面,活性炭因其极强的吸附能力在废水处理中获得广泛的应用。但其成本高,且易吸附饱和,若不进行再生回收不仅不经济还会对环境造成污染。常用的再生方法如热再生法和化学再生法等。需高温或高压条件,费用高。*近,电化学再生法引起了研究者的注意,在常温常压下其再生效率可达85%。但目前报道的电化学再生方法时间长达5h,主要原因是:(1)采用石墨等常规电极,不易产生羟基自由基等活性物种,氧化性欠强,导致再生不彻底。(2)再生装置很少考虑传质,导致再生时间长。基于上述研究背景,提出了将活性炭吸附和电化学上等氧化集于一体的新型“相转移”废水处理方法。首先将有机污染物通过活性炭流化床快速吸附。然后通过床内特制的电化学装置实现活性炭现场再生,从而使得转移到活性炭上的有机污染物降解,而活性炭再生后又能保证该体系的反复运行。目前,活性炭的再生存在一定的局限性,限制了活性炭的应用,如果再生问题得到解决,活性炭在处理废水中的应用会更加广泛。