您好,欢迎来到仪表展览网!
请登录
免费注册
分享
微信
新浪微博
人人网
QQ空间
开心网
豆瓣
会员服务
进取版
标准版
尊贵版
|
设为首页
|
收藏
|
导航
|
帮助
|
移动端
|
官方微信扫一扫
微信扫一扫
收获行业前沿信息
产品
资讯
请输入产品名称
噪声分析仪
纺织检测仪器
Toc分析仪
PT-303红外测温仪
转矩测试仪
继电保护试验仪
定氮仪
首页
产品
专题
品牌
资料
展会
成功案例
网上展会
词多 效果好 就选易搜宝!
上海咏绎仪器仪表有限公司
新增产品
|
公司简介
注册时间:
2006-12-20
联系人:
电话:
Email:
首页
公司简介
产品目录
公司新闻
技术文章
资料下载
成功案例
人才招聘
荣誉证书
联系我们
产品目录
示波器
混合示波器
模拟示波器
手持式示波器
虚拟示波器
逻辑分析仪
数字示波器
电源
信号源
函数发生器
任意波形发生器
射频信号源
调幅信号源
音频信号产生器
高频信号源
电视信号发生器
合成信号发生器
基础仪器
失真仪
微电阻计
抖动仪
便携式万用表
毫伏表
台式万用表
电子负载
直流稳压电源
交流电源
可编程数控电源
通讯测试
功率计
频谱分析仪
网络分析仪
无线通信测试仪
音频分析仪
频率特性分析仪
EMI/EMC测试系统
计量校验仪
过程校验仪
温度校验仪
压力校准器
多功能校准器
回路校验仪
电力测试
数字功率计
数字兆欧表
电能质量分析仪
相序表相序表
接地电阻测试仪
交直流钳表
蓄电池测试仪
钳形功率表
泄漏电流钳形表
电力测高仪
安规检测
高压表
绝缘耐压测试仪
绝缘测试仪
多功能测试仪
泄漏电流测试仪
耐压测试仪
元器件测试
LCR测试仪
IC集成电路测试仪
便携式LCR测试
半导体参数测试
无损检测
测距仪
粗糙度计
频闪仪
特拉斯计
转速表
涂层测厚仪
测振仪
超声波测厚仪
噪音计
超声波探伤仪
环境测量
风速计风速计
红外测温仪
照度计
红外热像仪
露点仪
尘埃粒子计数器
温度计
多功能环境测试
粉尘仪
温湿度计
气体检测
烟气分析仪
可燃气体检测
氧气检测仪
有毒气体检测
尾气分析仪
复合型气体检测
分析仪器
电子天平
水质分析仪
酸度计
当前位置:
首页
>>>
公司新闻
>
公司新闻
示波器与频谱分析仪介绍
示波器和频谱分析仪用来观察信号的各频率下的能量分布,的,
两设备的工作原理就不说了,太长了.
联系和区别:示波器仅能根据波形\查信号的周期来分析现象,而无法**分析信号中各种频率分量,
频谱分析仪则相反,虽然能够**分析信号中各种频率分量,但无法了解各频率分量中的相位关系,以及它们组合后的整体波形.
在示波器中,横坐标是时间,纵坐标是电压幅度(V)
示波器顾名思义就是用来观察信号的波形的,也就是信号幅度随时间的变化而变化的图形(曲线).
而在频谱分析仪中,横坐标是频率,纵坐标是幅度(通常用DB量度)
(如果用的是数字仪器,通常这两种功能很容易同时实现. 甚至配合声卡的spectralab软件,也能分析复合信号的相位、频率、幅度,并可当一台简易示波器使用,只是声卡采样频率不高限制了有效分析带宽.)
1.频谱分析仪的使用
1.1 频谱分析仪的原理
频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。
图1 频谱分析仪的原理框图
频谱分析仪采用频率扫描��外差的工作方式。混频器将天线上接收到的信号与本振产生的信号混频,当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。检波后的信号被视频放大器进行放大,然后显示出来。由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。
根据这个频谱,就能够知道被测设备是否有超过标准规定的干扰发射,或产生干扰的信号频率是多少。
1.2 频谱分析仪的使用方法
要获得正确的测量结果,必须正确地操作频谱分析仪。本节简单介绍频谱分析仪的使用方法。正确使用频谱分析仪的关键是正确设置频谱分析仪的各个参数。下面解释频谱分析仪中主要参数的意义和设置方法。
频率扫描范围:
规定了频谱分析仪扫描频率的上限和下限。通过调整扫描频率范围,可以对感兴趣的频率进行细致的观察。扫描频率范围越宽,则扫描一遍所需要时间越长,频谱上各点的测量精度越低,因此,在可能的情况下,尽量使用较小的频率范围。在设置这个参数时,可以通过设置扫描开始频率和终止频率来确定,例如:start frequency = 1MHz, stop frequency = 11MHz。也可以通过设置扫描中心频率和频率范围来确定,例如:center frequency = 6MHz, span = 10MHz。这两种设置的结果是一样的。
中频分辨带宽:
规定了频谱分析仪的中频带宽,这项指标决定了仪器的选择性和扫描时间。调整分辨带宽可以达到两个目的,一个是提高仪器的选择性,以便对频率相距很近的两个信号进行区别。另一个目的是提高仪器的灵敏度。因为任何电路都有热噪声,这些噪声会将微弱信号淹没,而使仪器无法观察微弱信号。噪声的幅度与仪器的通频带宽成正比,带宽越宽,则噪声越大。因此减小仪器的分辨带宽可以减小仪器本身的噪声,从而增强对微弱信号的检测能力。
分辨带宽一般以3dB带宽来表示。当分辨带宽变化时,屏幕上显示的信号幅度可能会发变化。若测量信号的带宽大于通频带带宽,则当带宽增加时,由于通过中频放大器的信号总能量增加,显示幅度会有所增加。若测量信号的带宽小于通频带宽,如对于单根谱线的信号,则不管分辨带宽怎样变化,显示信号的幅度都不会发生变化。 信号带宽超过中频带宽的信号称为宽带信号,信号带宽小于中频带宽的信号称为窄带信号。根据信号是宽带信号还是窄带信号能够有效地定位干扰源。
扫描时间:
仪器接收的信号从扫描频率范围的*低端扫描到***所使用的时间叫做扫描时间。扫描时间与扫描频率范围是相匹配的。如果扫描时间过短,测量到的信号幅度比实际的信号幅度要小。
视频带宽:
视频带宽的作用与中频带宽相同,可以减小仪器本身的带内噪声,从而提高仪器对微弱信号的检测能力。
2.用频谱分析仪分析干扰的来源
2.1 根据干扰信号的频率确定干扰源
在解决电磁干扰问题时,*重要的一个问题是判断干扰的来源,只有准确将干扰源定位后,才能够提出解决干扰的措施。根据信号的频率来确定干扰源是*简单的方法,因为在信号的所有特征中,频率特征是*稳定的,并且电路设计人员往往对电路中各个部位的信号频率都十分清楚。因此,只要知道了干扰信号的频率,就能够推测出干扰是哪个部位产生的。
对于电磁干扰信号,由于其幅度往往远小于正常工作信号,因此用示波器很难测量到干扰信号的频率。特别是当较小的干扰信号叠加在较大的工作信号上时,示波器无法与干扰信号同步,因此不可能得到准确的干扰信号频率。
而用频谱分析仪做这种测量是十分简单的。由于频谱分析仪的中频带宽较窄,因此能够将与干扰信号频率不同的信号滤除掉,**地测量出干扰信号频率,从而判断产生干扰信号的电路。
2.2 根据干扰信号的带宽确定干扰源
判断干扰信号的带宽也是判断干扰源的有效方法。例如,在一个宽带源的发射中可能存在一个单个高强度信号,如果能够判断这个高强度信号是窄带信号,则它不可能是从宽带发射源产生的。干扰源可能是电源中的振荡器,或工作不稳定的电路,或谐振电路。当在仪器的通频带中只有一根谱线时,就可以断定这个信号是窄带信号。
根据傅立叶变换,单根的谱线所对应的信号是周期信号。因此,当遇到单根谱线时,就要将注意力集中到电路中的周期信号电路上。
3.用近场测试方法确定辐射源
除了上述的根据信号特征判断干扰源的方法以外,在近场区查找辐射源可以直接发现干扰源。在近场区查找辐射源的工具有近场探头和电流卡钳。检查电缆上的发射源要使用电流卡钳,检查机箱缝隙的泄漏要使用近场探头。
3.1 电流卡钳与近场探头
电流探头是利用变压器原理制造的能够检测导线上电流的传感器。当电流探头卡在被测导线上时,导线相当于变压器的初级,探头中的线圈相当于变压器的次级。导线上的信号电流在电流探头的线圈上感应出电流,在仪器的输入端产生电压。于是频谱分析仪的屏幕上就可以看到干扰信号的频谱。仪器上读到的电压值与导线中的电流值通过传输阻抗换算。传输阻抗定义为:仪器50? 输入阻抗上感应的电压与导线中的电流之比。对于一个具体的探头,可以从厂家提供的探头说明书中查到它的转移阻抗ZT。因此,导线中的电流等于:
I = V / ZT
如果公式中的所有物理量都用dB表示,则直接相减。
对于机箱的泄漏,要用近场探头进行探测。近场探头可以看成是很小的环形天线。由于它很小,因此灵敏度很低,仅能对近场的辐射源进行探测。这样有利于对辐射源进行**定位。由于近场探头的灵敏度较低,因此在使用时要与前置放大器配套使用。
3.2 用电流卡钳检测共模电流
设备产生辐射的主要原因之一是电缆上有共模电流。因此当设备或系统有超标发射时,首先应该怀疑的就是设备上外拖的各种电缆。这些电缆包括电源线电缆和设备之间的互连电缆。
将电流探头卡在电缆上,这时由于探头同时卡住了信号线和回流线,因此差模电流不会感应出电压,仪器上读出的电压仅代表共模电流。
测量共模电流时,*好在屏蔽室中进行。如果不在屏蔽室中,周围环境中的电磁场会在电缆上感应出电流,造成误判断。因此应首先将设备的电源断开,在设备没有加电的状态下测量电缆上的背景电流,并记录下来,以便与设备加电后测量的结果进行比较,排除背景的影响。
如果在用天线进行测量时将频谱分析仪的扫描频率局限感兴趣的频率周围很小的范围内,则可以排除环境中的干扰。
3.3 用近场探头检测机箱的泄漏
如果设备上外拖电缆上没有较强的共模电流,就要检查设备机箱上是否有电磁泄漏。检查机箱泄漏的工具是近场探头。将近场探头靠近机箱上的接缝和开口处,观察频谱分析仪上是否有感兴趣的信号出现。一般由于探头的灵敏度较低,即使用了放大器,很弱的信号在探头中感应的电压也很低,因此在测量时要将频谱分析仪的灵敏度调得尽量高。根据前面的讨论,减小频谱分析仪的分辨带宽能够提高仪器的灵敏度。但是要注意的是,当分辨带宽很窄时,扫描时间会变得很长。为了缩短扫描时间,提高检测效率,应该使频谱分析仪的扫描频率范围尽量小。因此一般在用近场探头检测机箱泄漏时,都是首先用天线测出泄漏信号的**频率,然后使仪器用尽量小的扫描频率范围覆盖住这个干扰频率。这样做的另一个好处是不会将背景干扰误判为泄漏信号。
对于机箱而言,靠近滤波器安装位置的缝隙是*容易产生电磁泄漏的。因为滤波器将信号线上的干扰信号旁路到机箱上,在机箱上形成较强的干扰电流,这些电流流过缝隙时,就会在缝隙处产生电磁泄漏。
尊敬的客户:
您好,我司是一支技术力量雄厚的高素质的开发群体,为广大用户提供高品质产品、完整的解决方案和上等的技术服务公司。主要产品有稳压电源、超声波探伤仪、测力计等。
本企业坚持以诚信立业、以品质守业、以进取兴业的宗旨,以更坚定的步伐不断攀登新的高峰,为民族自动化行业作出贡献,欢迎新老顾客放心选购自己心仪的产品。我们将竭诚为您服务!
上一篇:
频谱分析仪系统主要的功能
下一篇:
测力计的基本原理
若网站内容侵犯到您的权益,请通过网站上的联系方式及时联系我们修改或删除