首页 >>> 公司新闻 >

公司新闻

使用上海来扬生产的试验变压器之后的感言、感触!

使用上海来扬生产的试验变压器之后的感言、感触!
  对于该井来说,在三个测量间距上进行新型深EM测量:区间1、区间2和*深的区间
  结果表明较深区间EM测量结果(即区间3)更重要,因为它可增大探测深度,有利于实时地质导向决策。
  使用上海来扬生产的试验变压器之后的感言、感触!该井设计考虑将水注入到海滨深水油田的储层。该储层构造复杂,有几个连通层。计划向上部和下部砂岩体注水以确保相邻生产井水力连通效率。
  试验变压器根据地震数据建水的构造地质模型。设计的轨迹总是距离两个单独通道的底部很近,起初在下部砂岩中穿行150mMD,然后在上部砂岩中穿行300mMD.
  下部:设计井3的构造地质模型。上部:地震数据和解释和前两个实例不同的是,并不了解这口井不同储层间的地质构造关系。根据两个不同速度模型解
  使用上海来扬生产的
试验变压器之后的感言、感触!释地震数据,一种模型针对一个通道,以改进补偿井相互关系。
  要用新型深探测EMLWD测量结果绘制以下地质目标:确定下面砂岩的顶部和基地,确定其厚度,期待达到*大值5mTST,因为试验井遇到2mTST的储层厚度;绘制油/水界面及其相对于下部砂岩基地的位置;探测接近下部砂岩外尖灭处的另一个较浅储层的存在;描绘两个砂岩体的内部界面;描述中间通道层以确定两个储层的连通性。
  设计的井眼轨迹如下:在XX233mMD处以井斜86从套管鞋钻出后,接近下部砂岩的顶部,达到下部砂岩的基地,同时连续监测储层性质变化;从下部砂岩底部,在超过50mMD处使倾斜由86变为893,横穿下部砂岩的顶部、中间通道区域和下部砂岩的底部,连续监测相对于砂岩底部的油水界面位置;遇到上部砂岩底部后,井将呈水平方向。
  
试验变压器在XX230mMD处开始地质导向操作。预计在遇到下部砂岩之前可能要钻50m泥岩。然而,所钻泥岩超过70m后,任何实时LWD测量结果中都观测不到下部砂岩储层。这是**次怀疑井眼轨迹太高而无法穿过下部砂岩,因此,井斜从90降至88.
  井眼在XX300mMD处穿过低阻砂岩(10.m)(厚度小于1mTST).该砂岩的总长度11mMD.尽管解释为属于下部储层的含水砂岩层,但是该砂岩太薄,无法与目标储层联系起来。
  测量区间不同的深探测EMLWD测量结果的反演表明在测量的径向探测范围内(该环境下多达30m)不存在下部厚砂岩。井眼轨迹以上存在一个薄高阻砂岩。确定上部砂岩存在后,把井斜从90增加至93来优化井眼轨迹以横穿两个通道间的地层。
  在钻前模拟期间,注意到由于低电阻率差异,接近于油水界面和上部储层底部的导向会很困难。
  因此,穿过中间通道区域后,决定在内部和接近于上部砂岩的高阻部分导向。通过将井斜降至90获得了成功。
  在XX780mMD处,深探测EMLWD反演显示基底导电层正在接近井眼轨迹,这反应了地震解释预测的上部储层尖灭的存在。为了避免横穿进入底部泥岩,将井眼倾斜又增至96,但井眼*终在XX845mMD处触及上部砂岩的底部,这可能是存在次等地震断层的缘故。
  根据所有三个区间深探测EMLMD测量结果的反演识别出上部砂岩储层之上的高阻砂岩。这与期望的较浅储层一致,不过,并不能完全分辨该储层的边界。
  5结论
  三个现场测试表明新型深探测EM测量结果径向探测深度为30m(从井眼起).深探测EM测量结果的反演可以探测总垂直距离为60m范围的地层边界。
  综合新型深探测EM仪和商用EM仪的测量结果可以识别沿井眼轨迹的多个地质特征。远地层边界的识别对于增强地质导向能力很重要。
  
试验变压器这些现场测试所获得的认识可应用到更进一步的工作计划和钻井作业中。