我国新能源规模快速增长、负荷峰谷差持续拉大,将进一步提高电力系统灵活性需求。国家电网预测,“十四五”末国网经营区内的灵活性资源需求将达到6.8亿千瓦,大大超出传统电源和抽水蓄能的调节能力,电力系统调节能力缺口约为1亿千瓦。煤电仍是*重要的灵活性资源供应主体,提供的灵活性资源占比仍超过50%。
在此背景下,改造传统火电,提升其灵活性的同时,有必要加强电力系统灵活调节能力建设,统筹核电配套新型储能的基础设施建设,多角度、多层次、多途径发展新型储能技术,积极构建与电力系统协调发展的电力储能体系。
为增加灵活调节电源,有关部门提出将储能纳入电力系统,探索建立灵活性资源容量市场机制。相关数据显示,截至2021年底,我国新型储能累计装机仅为400万千瓦,而虚拟电厂的调节负荷作用有限。预计“十四五”期间,抽水蓄能的造价、寿命和可靠性仍优于电化学储能,大容量系统级储能应优先发展抽水蓄能。
一、特点(LYYHX6000无线氧化锌避雷器带电测试仪测试迅速准确)
本机采用大屏幕液晶显示,全中文菜单操作,使用简便。
高精度采样、处理电路,先进的付里叶谐波分析技术,确保数据更加可靠。
仪器采用独特的高速磁隔离数字传感器直接采集输入的电压、电流信号,保证了数据的可靠性。
本仪器可以使用电场感应或无线传输方法代替PT二次接线。
本仪器可以不接PT二次,直接测量阻性电流。
本仪器共有六种测试方法,给测试人员提供了非常多的选择余地。(PT二次 法,感应法,无线传输法,单电流同步法,pt二次同步法,无线同步法)
本仪器可以三相同测,自动补偿。使用特别方便
仪器配有可充电电池、日历时钟、微型打印机,可存储120组测量数据;
二、面板示意图(LYYHX6000无线氧化锌避雷器带电测试仪测试迅速准确)
面板说明:
1---参考电压输入端; 2---天线; 3---测量接地端;
4---微型打印机; 5---电源开关; 6---充电插座;
7---串口; 8---泄漏电流输入端; 9---液晶显示器;
10—触摸键盘
主要技术参数
全电流测量范围: 0~10mA有效值
准确度: ±(读数×5%+5uA)
阻性电流基波测量准确度(有线不含相间干扰):±(读数×5%+5uA)
电流谐波测量准确度: ±(读数×10%+10uA)
电流通道输入电阻: ≤2Ω
参考电压输入范围: 25V~250V有效值
准确度: ±(读数×5%+0.5V)
电压谐波测量准确度: ±(读数×10%)
参考电压通道输入电阻:≥1800kΩ
电池连续工作时间: 8小时以上
电池充电时间: 6小时以上
交流充电:
仪器尺寸:32cm×27.5cm×14cm
仪器重量:5kg(不含电缆箱)
三、操作模式(LYYHX6000无线氧化锌避雷器带电测试仪测试迅速准确)
(PT二次)模式,(PT二次同步显示)模式:
仪器输入PT二次电压作为参考信号,同时输入MOA电流信号,经过傅立叶变换可以得到电压基波U1、电流基波峰值Ix1p和电流电压角度Φ。因此与电压同相分量为阻性电流基波峰值(Ir1p),正交分量是容性电流基波峰值(Ic1p):Ir1p=Ix1pCOSΦ Ic1p=Ix1pSINΦ
考虑到δ=90°—Φ相当于介损角,直接用Φ评价MOA也是十分简捷的:没有“相间干扰”时,Φ大多在81°~86°之间。按“阻性电流不能超过总电流的25%”要求,Φ不能小于75.5°,可参考下表对MOA性能分段评价:
性能
|
<75°
|
75°~77°
|
78°~80°
|
81°~83°
|
84°~89°
|
>89°
|
Φ
|
劣
|
差
|
中
|
良
|
优
|
有干扰
|
|
|
|
|
|
|
|
实际上Φ<80°时应当引起注意。
接地:
测量前先连接地线,测量完后拆接地线!如果接地点有油漆或锈蚀必须清理干净。
参考电压
参考电压信号线一端插入参考电压插座,另一端接被测相PT二次低压输出:小黑夹子接中性点(x),小红夹子接待测相电压(a/b/c)。外施法测量时接升压变压器的测量绕组。如果PT距离较远,可使用加长线。
电流信号
先将泄漏电流信号线插头插入仪器,后将另一端夹子夹到(或通过绝缘竿搭到)被测相MOA放电计数器上端。试验室内可将无放电计数器的MOA放到绝缘板上,由MOA下端取电流信号。电流信号不能使用加长线。
接线图如下:(图二)
2.(感应)模式(应客户要求定制):
在MOA底座上设置电场感应传感器,其感应电流超前电场强度(母线电压)90°,经过积分运算后与电场强度或母线电压同相位,因此可以用电场感应传感器的信号作为测量参考。仪器输入电场感应传感器信号,同时输入MOA电流信号,经过傅立叶变换可以得到电场基波E1、电流基波峰值Ix1p和电流电场角度Φ。与电场同相分量为阻性电流基波峰值(Ir1p),正交分量是容性电流基波峰值(Ic1p)。
使用B相感应信号作参考
因为A/C两个边相对B相底座的电场影响抵消,应将感应板设置到B相MOA底座上与A/C相相对称的位置,可以得到B相正确的相位信息。A/C相MOA底座电场受B相影响,不要将感应板设置到A/C相MOA底座上。
接线图如下:(图三)
3.(无线 传输)模式,(无线传输同步显示)模式:
仪器将接收到的无线信号作为参考电压,同时输入MOA电流信号,经过傅立叶变换可以得到电压基波U1、电流基波峰值Ix1p和电流电压角度Φ。因此与电压同相分量为阻性电流基波峰值(Ir1p),正交分量是容性电流基波峰值(Ic1p):Ir1p=Ix1pCOSΦ Ic1p=Ix1pSINΦ
考虑到δ=90°—Φ相当于介损角,直接用Φ评价MOA也是十分简捷的:没有“相间干扰”时,Φ大多在81°~86°之间。按“阻性电流不能超过总电流的25%”要求,Φ不能小于75.5°,可参考下表对MOA性能分段评价:
性能
|
<75°
|
75°~77°
|
78°~80°
|
81°~83°
|
84°~89°
|
>89°
|
Φ
|
劣
|
差
|
中
|
良
|
优
|
有干扰
|
实际上Φ<80°时应当引起注意。
接地:
测量前先连接地线,测量完后拆接地线!如果接地点有油漆或锈蚀必须清理干净。
无线信号:
参考电压信号线一端插入信号发射器的参考电压插座,另一端接被测相PT二次低压输出:小黑夹子接中性点(x),小红夹子接待测相电压(a/b/c)。外施法测量时接升压变压器的测量绕组。如果PT距离较远,可使用加长线。打开信号发射器的电源开关,看到发射信号指示灯频闪即可。
电流信号
先将泄漏电流信号线插头插入仪器,后将另一端夹子夹到(或通过绝缘竿搭到)被测相MOA放电计数器上端。试验室内可将无放电计数器的MOA放到绝缘板上,由MOA下端取电流信号。电流信号不能使用加长线。
接线图如下:
在(无线传输)模式,(无线传输同步显示)模式下,需要先把天线拧上,在拧天线时候需要注意力度,不要太紧。主机和信号发射器的天线都拧上才可以。
如果信号接收不好,应该把信号发射器放在高处。
4. (单电流同步显示)模式:
仅仅需要一根电流线,取到电流信号即可测量出全电流和阻性电流。
电流信号
先将泄漏电流信号线插头插入仪器,后将另一端夹子夹到(或通过绝缘竿搭到)被测相MOA放电计数器上端。试验室内可将无放电计数器的MOA放到绝缘板上,由MOA下端取电流信号。电流信号不能使用加长线。
接线图如下:(图四)
5.注意:在(同步显示)模式下,仅仅IB即绿色电流通道适用。
同时,在测试状态下仅仅“确定”和“减小”键适用。而且需要长按有效。
“确定”键 打印数据。
“减小”键 返回初始状态。
四、三相同测(LYYHX6000无线氧化锌避雷器带电测试仪测试迅速准确)
接地
测量前先连接地线,测量完后拆接地线!如果接地点有油漆或锈蚀必须清理干净。
参考电压:
参考电压信号线一端插入参考电压插座,另一端接B相PT二次低压输出。
电流信号:
先将泄漏电流信号线插头插入仪器,后将另一端的四个夹子夹到(或通过绝缘竿搭到)A,B,C相MOA放电计数器上端和地端。电流信号不能使用加长线。
五.操作步骤(LYYHX6000无线氧化锌避雷器带电测试仪测试迅速准确)
打开电源开关, 屏幕出现开机界面约几秒后出现如下所示主菜单(图六)。
主菜单的 具体操作说明如下:
线路编号:按“功能”键将光标指向“线路编号”,按“确定”键进入;按“功能”键选择要调整的位置,此位置下会有一个小光标;按 “增大”、“减小” 键进行选择,所有位调整完成后,按“确定”键。
PT变比:按“功能”键将光标指向“PT 变比”,按“确定”进入;按“功能”键选择要调整的位置,此位置下会有一个小光标;按 “增大”、“减小” 键进行选择,所有位调整完成后,按“确定”键。
测试相序:按“功能”键将光标指向“测试相序”,按“确定”进入;按“功能” 键选择要调整的位置,此位置下会有一个小光标;按 “增大”、“减小” 键进行选择,所有位调整完成后,按“确定”键。其中 A,B,C 表示单相测量,X表示三相同测.
补偿角度:调整方法同上,一般相间干扰的影响大约在2°~ 5°,由于准确测算干扰量有一定困难,一般不提倡硬性补偿,而是将其设置为 0.0°,可以按规程要求,纵向比较一段时间内数据变化趋势。如果需要调整边相校正角,可参考后面“测量原理”的有关章节.如果选择三相同测,角度自动补偿.
日期:调整方法同上,用“功能”键选择要调整的项目年、月、日、时、分、秒,用“增大”、“减小”键进行调整,全部调整完后,按“确定”键。
模式选择:按“确定”将会在(PT二次),(感应板),(无线传输),(同步显示)四种模式之间切换。
同步显示模式:当选择到(同步显示)模式下时候,将光标移动到“测
试”上,按“增大”键将会显示 (PT二次同步显示模 式),(无线传输同步显示模式),(单电流同步显示模式)。
查看:按“功能”键将光标指向“查看”,按“确定”进入(如图七所示);按 “增大、减小、功能” 键选择要查看的数据,按“确定”键显示该组数据;
测量:按“功能”键使光标指向“测试”,按“确定”进入测量,出现图八所示测量画面。
测试完毕,会出现测试结果,如图九所示。
显示: 转换显示画面,显示全部测试信息,或简要显示。如果是三相同测,按“增大”,“减小”可以循环显示三相的信息。
打印:可将测量的数据打印出来,但不存储。
存储:存储当前数据,选择好数据的存储位置,按“确定”键保存。
退出:退出测量,回到系统主菜单。
但是,煤电灵活性改造、抽水蓄能电站的开发利用都存在不同程度的限制。这使得电化学储能、压缩空气储能、氢储能等新型储能技术将成为未来清洁能源更大规模发展的重要支撑。新型储能容量可大可小,环境适应性强,能够灵活部署于电源、电网和用户侧等各类场景,可以作为抽水蓄能的补充。“十四五”期间及中长期需要兼顾电网、抽水蓄能及新型储能,合理确定发展规模、设施布局、接入范围和建设时序,引导抽水蓄能和新型储能合理布局、有序发展。
近期,相关部门先后出台了《关于加快推动新型储能发展的指导意见》《“十四五”新型储能发展实施方案》等文件,提出多元发展储能技术,以需求为导向,探索开展储氢(氨)、储热(冷)及其他新储能技术的研究和示范应用。同时,不同的储能技术要针对典型应用场景,满足不同时长和频率的储能要求。值得一提的是,氢储能也被明确纳入新储能技术。
值得注意的是,目前,由于参与电力系统灵活调节的技术相当复杂,核电尚未开展日跟踪调节等活动,而是通过市场辅助服务费用的分摊来处理。当然,一些省份,例如福建提出,进入深度调峰区间时,核电机组负荷率降到75%时将给予一定补偿。
此前,英国等核电占比较高的国家,曾因核电机组灵活性不足而难以实现价格响应,造成电力辅助服务成本飙升。解决此类问题,需要立足先进核电机组优越的动态性能,统筹考虑核电参与电力系统灵活调节问题。
技术更新将为核能提供越来越多的灵活性。核电厂可通过与储能、新型热电转换系统和制氢技术结合,成为可以调度的电力来源、热能和化工生产的能源来源。未来,随着先进核能系统的研发,技术更新提供的灵活性空间将更大,甚至可能彻底改变清洁能源系统。
上海来扬电气转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。