保障电力方便可靠供应是公司的首要任务。当前正值“七下八上”迎峰度夏关键期,受经济快速复苏和高温天气叠加影响,公司经营区多个省级电网用电负荷快速攀升。电力的充足稳定供应,离不开特高压等跨区跨省输电通道的强力支撑。
在山东,锡盟—山东1000千伏特高压交流输变电工程投运6年来,已向山东输送电能1300亿千瓦时,相当于山东全省年用电量的六分之一。
在四川,提前竣工投产的白鹤滩—江苏±800千伏特高压直流工程每年可向华东地区输送超过300亿千瓦时清洁电能,相当于南京半年的用电量。江苏省委书记吴政隆评价,工程的竣工投产正当其时,对于满足用电需求、助力民生保障意义重大。
截至目前,公司累计建成29项稳定方便可靠的特高压输电工程,*远输电距离达3300千米,国家电网成为全球输电距离*远、能源资源配置能力*强的电网,有力支撑电力可靠供应。
特高压建设的步伐正持续加快。年内,公司计划开工金上—湖北、陇东—山东、宁夏—湖南、哈密—重庆直流以及武汉—南昌、张北—胜利、川渝联网和黄石交流8项特高压输电工程。
国家发展改革委经济运行调节局副局长关鹏认为,国家电网全力推进重大项目建设,是优化电力资源配置、提升能源电力可靠保供能力、扩大有效投资需求、巩固经济恢复基础的重要举措。
未来几年,我国电力需求仍将稳步增长,全社会用电量到2025年将达到9.5万亿千瓦时。对此,公司还将加快推进大同—天津南交流、陕西—安徽直流等6项特高压工程前期工作,进一步优化完善网架结构,保障电力方便可靠供应,促进电网发展始终与经济社会发展相适应。
“我们要通过加快推进重大项目建设,大力提升能源资源配置能力,将跨区跨省输电能力从目前的2.4亿千瓦提升到2030年的3.7亿千瓦以上。
1 概述(LYYB5000氧化锌避雷器测试仪快速高精度的测试能力)
氧化锌避雷器综合测试仪用于检测氧化锌避雷器(MOA)的各相电气性能。该仪器适用于各个电压等级的氧化锌避雷器的现场带电检测以及停电状态下试验室做的出厂和验收试验。通过测量全电流及阻性电流等参数,可以及时发现氧化锌避雷器内部绝缘受潮和阀片老化等危险缺陷。
2 功能及特点(LYYB5000氧化锌避雷器测试仪快速高精度的测试能力)
2.1 仪器小型化、手持式设计,体积小、重量轻便于携带和操作。
2.2 采用带有DSP浮点处理单元的高性能、低功耗ARM处理器,运算速度更快、运算精度更高、处理数据量更大;从而可以保证测试数据计算的准确性和稳定性。
2.3 高精度采样滤波电路及数字滤波技术,可滤除现场干扰信号。
2.4 采用浮点快速傅里叶算法,从而实现对基波、谐波电压、电流信号的高精度分析。
2.5 采用工业级5.6寸640×480点阵高亮度彩色液晶屏,显示清晰,人机界面友好;对于一些重要的操作及参数设置,显示其提示信息和帮助说明;屏幕顶部状态栏可显示各个外设工作状态及测试状态信息。
2.6 可同时测量三相氧化锌避雷器的电气参数,并可自动补偿相间干扰;也可单相测量,支持B相接地的PT二次电压作为参考电压;当被测相与参考电压相别不同时,可自动计算补偿角度。
2.7 提供有线、无线测试方式,无线测试方式操作更加简便、灵活;可大大降低现场测试人员工作强度。
2.8 特有的感应板替代PT二次电压测量技术,使测量更方便快捷。
2.9 电压采集器集成本地显示(128×64点阵OLED液晶屏)及相序检测功能,可显示三相全电压、电压基波、3次、5次、7次谐波有效值、系统频率值及三相电压相位差;便于现场测试人员快速检查电压采集器与PT二次电压输出端子连接情况及三相电压各项参数。
2.10 电压采集器采用双重全数字隔离技术,更加方便可靠。
2.11 交直流两用:内置锂电池供电或者220V交流充电器供电自适应。
2.12 仪器主机和电压采集器内置大容量可充电锂电池,一次充电完成,可持续工作8小时。
2.13 智能电量管理:剩余电量显示、低电量报警、长时间闲置提示、背光自动调节。
2.14 内置实时时钟,可实时显示当前时间和日期;自动记录测试日期及时间。
2.15 测试数据存储方式分为本机存储和优盘存储,本机存储可存储测试数据100条,并且本机存储可转存至优盘;优盘存储可保存测试数据及波形图片,测试数据为TXT格式,波形图片为BMP格式,可直接在电脑上编辑打印。
2.16 选配的外置热敏打印机,可打印测试数据及已保存测试记录;打印内容可选择,从而可以节省打印纸的用量。
3 技术指标(LYYB5000氧化锌避雷器测试仪快速高精度的测试能力)
3.1 参考电压测量
3.1.1 参考电压输入范围: 25V~250V有效值,50Hz/60Hz
3.1.2 参考电压测量准确度: ±(读数×5%+0.5V)
3.1.3 电压谐波测量准确度: ±(读数×10%)
3.1.4 参考电压通道输入电阻:≥1500kΩ
3.2 电流测量
3.2.1 全电流测量范围: 0~20mA有效值,50Hz/60Hz
3.2.2 准确度: ±(读数×5%+5uA)
3.2.3 阻性电流基波测量准确度:±(读数×5%+5uA)
3.2.4 电流谐波测量准确度: ±(读数×10%+10uA)
3.2.5 电流通道输入电阻: ≤2Ω
3.3 电场强度测量
3.3.1 电场强度输入范围: 30kV/m~300kV/m
3.3.2 电场强度测量准确度:±(读数×10%)
3.3.3 电场谐波测量准确度:±(读数×10%)
3.4 使用条件及外形
3.4.1 工作电源: 内置锂电池或外置充电器,充电器输入100-240VAC,50Hz/60Hz
3.4.2 充电时间: 约4小时
3.4.3电池工作时间: 主机8小时,电压采集器8小时
3.4.4 主机尺寸: 246mm(长)×156mm(宽)×62mm(高)
3.4.5 主机重量: 1.0kg(不含线缆)
3.4.6 电压采集器尺寸:115mm(长)×120mm(宽)×65mm(高)
3.4.7 电压采集器重量:0.6kg (不含线缆)
3.4.8 使用温度: -10℃~50℃
3.4.9 相对湿度: <90%,不结露
4 测量及补偿原理(LYYB5000氧化锌避雷器测试仪快速高精度的测试能力)
4.1 测量原理
本仪器采用如图1所示的投影法计算基波及各次谐波的阻性电流。
图中:U1 基波参考电压
Ix1p 基波全电流峰值
Ir1p 基波阻性电流峰值
Ic1p 基波容性电流峰值
Φ 基波全电流超前基波参考电压的角度
计算公式:Ir1p = Ix1p·CosΦ
Ic1p = Ix1p·SinΦ
氧化锌避雷器全电流既含有氧化锌避雷器非线性产生的高次谐波,也含有母线电压谐波产生的高次谐波。与Irp相比Ir1p更加稳定真实;因此建议用Ir1p作为阻性电流指标,Φ和Ir1p均能直观衡量氧化锌避雷器的性能。
4.2 相间干扰及自动补偿原理
在现场三相同时测试一字排列的氧化锌避雷器时,如图2所示,由于杂散电容的存在,A、C相电流相位都要向B相偏移,一般偏移角度为2°~4°左右;这将使A相φ减小,阻性电流增大,C相φ增大,阻性电流减小甚至为负,这种现象称相间干扰。
解决这一问题的方法是采用自动补偿算法,即仪器内置的“自动边补”功能。假设Ia、Ic无干扰时相位相差为120°,假设B相对A、C相干扰是相同的;测量出Ic超前Ia的角度Φca,A相补偿Φ0a=(Φca-120°)/2,C相补偿Φ0c= -(Φca -120°)/2。这种方法实际上对A、C相阻性电流进行了平均,极有可能掩盖存在的问题。因此建议考核没有进行自动补偿的原始数据(即补偿角度为0°),并考核其变化趋势。
5 面板及各部件功能介绍(LYYB5000氧化锌避雷器测试仪快速高精度的测试能力)
5.1 主机面板图及接口板图
主机面板图及接口板图如图3所示。
5.1.1 电流输入:分为A相、B相、C相三个输入通道,单相测量时,无论测试A相、B相或者C相电流,都从A相通道输入。
5.1.2 参考信号输入:有线测试方式时,使用专用通讯电缆,用于连接电压采集器;感应测试方式时,用于连接感应板,输入感应电场信号。
5.1.3 液晶屏:工业级640×480点阵高亮度彩色液晶屏,显示操作菜单、测试数据、波形等。
5.1.4 按键:操作仪器用。 “↑↓”为“上下”键,选择移动或修改数据;“←→”为“左右”键,选择移动或修改数据;“确认”键,确认当前操作;“取消”键,放弃当前操作。
5.1.5 天线:在使用无线测试方式时,请将配套天线安装在天线座上,以便于良好的接收无线信号,不安装天线将大大缩短无线通讯距离。
5.1.6 优盘接口:外接优盘用,用来存储测试数据,请使用FAT或FAT32格式的U盘。在存储过程中,严禁拨出优盘。
5.1.7 RS232接口:此接口为外置打印机接口,用于连接外置打印机;打印测试结果,打印内容可选择,不关心的数据无需打印,从而节约打印用纸。
5.1.8 DC IN:仪器充电器接口,请使用仪器配套专用充电器。
5.1.9 开关: 仪器电源开关,在不使用仪器时,请及时关闭仪器电源,以节省电池电量。
5.2 电压采集器前后面板
电压采集器前后面板如图4、5所示。
5.2.1 通讯接口:有线测试方式时,使用专用通讯电缆,用于连接仪器主机参考信号输入。
5.2.2 天线:在使用无线测试方式时,请将配套天线安装在天线座上,以便于电压采集器有效的发射无线信号;不安装天线将大大缩短无线通讯距离,时间过长有可能烧毁内部无线模块。
5.2.3 按键:操作仪器用。 “↑↓”为“上下”键,选择移动或修改数据;“→”为“右”键,选择移动或确认操作;长按“→”键,进入设置菜单界面。
5.2.4 液晶屏:工业级128×64点阵OLED液晶屏,显示操作菜单、测试数据。
5.2.5 发送指示灯:电压采集器通过无线方式或者有线方式,每发送一次数据指示灯闪烁一次。
5.2.6 充电口:仪器充电器接口,请使用仪器配套专用充电器。
5.2.7 开关: 电压采集器电源开关,在不使用时,请及时关闭电源,以节省电池电量。
5.2.8 电压输入:参考电压输入,分为A相(黄色线)、B相(绿色线)、C相(红色线)、中性点或地线(黑色线);选择参考相别为单相,且无论是A相、B相、C相、AB相、CB相都从A相(黄色线)和黑色线输入。
注意:如果PT二次侧是B相接地的,A相(黄色线)接PT二次侧A相,黑色线接地,仪器主机参考相别选择“A-B”;或者A相(黄色线)接PT二次侧C相,黑色线接地,仪器主机参考相别选择“C-B”。
输入线中串接了120mA自恢复保险。
5.2.9 接地柱:在测试过程中,仪器必须可靠接地。在连接其它测试线之前应先连接接地线;在测试结束后,然后拆除接地线,以保证人身保障。
发展新能源是推动能源清洁低碳转型的关键一招,也是端牢能源饭碗、实现“双碳”目标的长久之计。
截至2021年年底,公司经营区新能源装机规模达到5.4亿千瓦,新能源利用率达到97.4%,成为全球新能源并网装机规模*大的电网。持续提高电力系统调节能力,是公司近年来服务新能源方便可靠发展的一大重点。
作为电力系统的“稳定器”“调节器”,抽水蓄能电站在灵活响应电网需求、促进新能源消纳方面的作用举足轻重。以今年4月全方位投产的吉林敦化抽水蓄能电站为例,该电站每年可促进清洁能源消纳超过50亿千瓦时,节约标准煤45万吨,减排二氧化碳87万吨。
在助力国家实现“双碳”目标过程中,抽水蓄能发展正迎来一个重要的机遇期。去年9月,国家能源局发布《抽水蓄能中长期发展规划(2021~2035年)》,提出到2025年,抽水蓄能投产总规模达到6200万千瓦以上;到2030年,投产总规模达到1.2亿千瓦左右。
截至2021年年底,国家电网经营区抽水蓄能电站在运、在建规模分别达到2631万千瓦、4643万千瓦。
从长远发展来看,公司将在未来几年继续加大抽水蓄能电站建设力度,力争到2030年实现经营区抽水蓄能装机规模达到1亿千瓦的发展目标,进一步提升系统调节能力,加快推动能源清洁低碳转型。
重大项目建设既利当前,又利长远。未来,公司越来越多重大项目的落地见效,将在有效带动社会投资、助力经济企稳复苏的同时,进一步提升电力供应保障能力,服务千家万户美好生活。
上海来扬电气转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。