源、网、荷、储资源广泛存在于能源互联网各个环节,具有参与主体数量众多、分布分散且源荷双侧不确定性强等特点。唯有在调度层面把握和控制电源、电网、负荷和储能之间的互动,才能提高能源互联网的可靠性和经济性。可以说,“源-网-荷-储”互动调控相当于能源互联网的智慧大脑。
为了引导“源-网-荷-储”互动,调度层面应借助物联网、5G、大数据、人工智能、区块链、移动互联等支撑技术,构建“源-网-荷-储”互动调控体系。这一体系包括两个层面:充分认识互动对象,分析其互动特性,建立互动模型,并计算互动对象的互动潜力,以及在不同的市场机制、外界环境下能发挥出多大的响应能力;提升不确定性环境下的分析和调控能力,掌握“源-网-荷-储”互动环境下的电网可靠分析方法,突破协同优化技术和互动控制技术等,从整体上把握互动环境下电网调控运行分析方法的脉络,攻克互动领域的基本理论问题与关键性技术。
一、产品概述(YDQC高压试验变压器拥有雄厚的技术力量)
YDQC系列轻型交直流高压试验变压器是在同类产品YDJ(G)型高压试验变压器的基础上,按试验变压器国家标准ZBK41006—89要求,经改进后生产的一种新型产品,本系列产品具有体积小、重量轻、结构紧凑、功能齐全、使用方便等特点。实用于电力、工矿、科研等部门,对各种高压电气设备、电气元件、绝缘材料进行工频耐压试验和直流泄漏试验,是高压试验中必不可少的仪器。
二、产品结构(YDQC高压试验变压器拥有雄厚的技术力量)
YDQC系列轻型高压试验变压器铁芯为单框式。线圈采用同芯圆筒多层塔式结构,初级低压绕组绕在铁芯上,次级高压绕组绕在低压绕组外侧,这种同轴布置减少了绕组间的藕合损耗。高压硅堆用特殊工艺封装在套管内,产品的外壳制成与器芯配合较佳的八角形结构,整体外型美观大方。其内外部结构见图1。
产品型号含义
1-均压球;2-硅堆短路杆;3-高压套管;4-油阀;5-壳体;6、7-调整电压输入a、x端子;8、9-仪表测量E、F端子;10-高压尾X端子;11-变压器外壳接地端;12-高压输出A端子;13-高压整流硅堆;14-内部均压环;15-变压器铁芯;16-初级低压绕组;17-测量仪表绕组;18-二次级高压绕组;19-变压器油。
三、工作原理(YDQC高压试验变压器拥有雄厚的技术力量)
YDQC系列轻型高压试验变压器为单相变压器,联结组标号II。单台高压试验变压器的工作过程,用交流220V(10KVA以上为380V)电压接入电源控制箱(台),经电源控制箱(台)内自藕调压器(50KVA以上调压器外附)调节0~200V(10KVA以上0~400V)电压至试验变压器的初级绕组,根据电磁感应原理,在试验变压器高压绕组可获得试验所需的高电压。其工作原理图见图2所示。
YDQC高压试验变压器拥有雄厚的技术力量1、单台YDQC高压试验变压器工作原理示意图
图2 :单台YDQC高压试验变压器工作原理示意图
在试验变压器中:a、x为低压输入端;A、X 为高压输出端;E、F为仪表测量端。
2、单台交直流两用型高压试验变压器工作原理见图3。图中所示:高压套管内装有高压硅堆,串接在高压回路中作高压整流,以获得直流高电压。当用一短路杆将高压硅堆短接时,可获得交流高电压,其状态为交流输出;反之在抽出短路杆时,其状态为直流输出。
3、三台高压试验变压器串激获得更高电压原理见图4,串激高压试验变压器有很大的优越性,因为整个试验装置由多个单台串激式试验变压器组成,单台试验变压器有着体积小、重量轻、便于运输的特点,它既可以串接成高出几倍的单台试验变压器输出电压组合使用,又可以分开单独使用。整套试验装置投资小、经济实惠。图3所示:在三台串激式试验变压器串激使用中,单台试验变压器B1、B2、B3的输出电压都是U,第1、二级的试验变压器内部都有一个激磁绕组,分别为A1、C1 和A2、C2。当控制电压加在第1级试验变压器B1的初级绕组a1、x1上,激磁绕组A1、C1给予试验变压器B2初级绕组供电,第2级试验变压器B2的激磁绕组A2、C2给试验变压器B3的初级绕组供电。由于第1级试验变压器B1的高压尾及壳体接地,第2、三级的试验变压器B2和B3对地有绝缘支架的隔离,这样试验变压器B1、B2、B3对地输出电压分别为1U、2U、3U。
图3:三台高压试验变压器串激工作原理示意图
B1、B2、B3- 串激式高压变压器;1U、2U、3U-各级对地电压;
PV- 高压示值表(KV); ZJ1、ZJ2-绝缘支架。
四、使用方法及注意事项(YDQC高压试验变压器拥有雄厚的技术力量)
1、YDQC高压试验变压器做工频耐压试验使用接线方法见图5。做工频耐压试验前,先根据试验变压器的额定容量选择好限流电阻,(水电阻)的阻值,再根据被试品需加的高压电压值调整好放电球隙的球间距,为了提高对被试品施加电压的测量精度,应在高压侧接入FRC阻容分压器来测量电压。
图4:工频耐压试验使用接线原理示意图
R1、R2- 限流电阻; Qx- 放电球隙; Zx- 被试品;
FRC- 阻容分压器; V- 分压器高压表。
按照图4、结合图2所进行的工频耐压试验接好工作线路,试验变压器的高压绕阻的X端(高压尾)、仪表测量绕组的F端、试验变压器的外壳以及电源控制箱(台)的外壳必须可靠接地。
用三台试验变压器串激做工频耐压试验时、第2、三级试验变压器的初级绕组X端,仪表测量绕组的F端,以及高压绕组的X端(高压尾)均接本级试验变压器的外壳,第2、三级试验变压器的主体必须放置在绝缘支架上。除第1级以外、第2、三级试验变压器的主体不要接地线。其接线方式见图3所示。
接电源前,电源控制箱(台)的调压器必须调到零位。接通电源后,绿色指示灯亮,按一下启动按钮,红色指示灯亮,表示试验变压器已接通控制电源,开始升压。
从零位开始按顺时针方向匀速旋转调压器手轮升压。(升压方式有:快速升压法,即20S逐级升压法,慢速升压法,即60S逐级升压法,极慢速升压法供选用)电压从零开始按选定的升压速度升到您所需额定试验电压的75%后,再以每秒2%额定试验电压的速度升到您所需试验电压,并密切注意测量仪表的指示以及被试品的情况,被试品施加电压的时间到后。应在数秒内匀速将调压器返回,高压降至1/3试验电压以下,按一下停止按钮,高压、低压输出停止,然后切断电源线,试验完毕。
“源-网-荷-储”互动有利于提高新能源消纳水平,提升不确定性增强条件下电力系统的平衡调节能力。实际应用中,“源-网-荷-储”互动调控将在哪些能源互联网场景中发挥作用?
“源-网-荷-储”互动调控可通过源源互补、源荷互动等形式,结合电源侧不同类型间的协调互补特性、柔性负荷的灵活可调节特性和储能资源的充放电特性等,在新能源大发时鼓励负荷多用(储存)电,提高新能源的主动消纳能力。当前,华东电网、华北电网和宁夏、山西等省级电网都开展了“源-网-荷-储”协同提升新能源消纳的研究和应用。据测算,如将这一模式推广到国内,每年可多消纳风光电量25亿千瓦时以上。
互动调控可促进削峰填谷,即通过源网协调、网荷互动、网储互动等形式,采用实行峰谷分时电价和开发利用可中断负荷等手段,以市场机制引导负荷侧的用电行为,在不影响用电体验的前提下给电网增加额外的平衡资源。这有利于减少电网峰谷差,尤其可以解决电网短时尖峰负荷问题。以华东电网为例,若基于源网荷储互动运行,可有效削减短时尖峰负荷1500万千瓦,显著提高电网投资效率。
当受新能源大发、负荷快速攀升、电网事故等因素影响导致系统备用不足时,源荷互动、网荷互动、网储互动可通过负荷和储能侧的灵活调节解决电力平衡难题。
互动调控还可提升电网事故应急处置能力。在跨区电力通道发生故障、失去大电源等大功率缺失的极端状况下,仅靠发电侧的调节能力不能满足全网功率平衡的需求。此时,精准切负荷、网荷互动、网储互动可将电网的故障处置调控资源扩大到海量的柔性负荷,调用全网可调节资源共同参与事故处置,有助于保障电网可靠稳定运行。
“源-网-荷-储”互动调控有利于电源侧减少发电煤耗,提高新能源消纳水平;促进电网削峰填谷,保证电网保障经济运行;有利于减少负荷被动切除,提高用电满意度。应注意的是,实现“源-网-荷-储”互动不仅要实现各类新技术的突破,更需要完善与之配套的宏观政策措施、市场机制、商业模式,做到技术与政策的有机结合。
上海来扬电气转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。