您好,欢迎来到仪表展览网!
请登录
免费注册
分享
微信
新浪微博
人人网
QQ空间
开心网
豆瓣
会员服务
进取版
标准版
尊贵版
|
设为首页
|
收藏
|
导航
|
帮助
|
移动端
|
官方微信扫一扫
微信扫一扫
收获行业前沿信息
产品
资讯
请输入产品名称
噪声分析仪
纺织检测仪器
Toc分析仪
PT-303红外测温仪
转矩测试仪
继电保护试验仪
定氮仪
首页
产品
专题
品牌
资料
展会
成功案例
网上展会
词多 效果好 就选易搜宝!
济南华科瑞达电子科技有限公司
新增产品
|
公司简介
注册时间:
2010-11-07
联系人:
电话:
Email:
首页
公司简介
产品目录
公司新闻
技术文章
资料下载
成功案例
人才招聘
荣誉证书
联系我们
产品目录
天平衡器
电子天平
电子分析天平
电子精密天平
实验室仪器
水分测定仪
离心机
酸度计
培养箱
振荡器
恒温水槽
恒温油槽
电导率仪
溶解氧测定仪
ORP测定仪
超声波清洗器
ishine脱气加热系列
ishine脱气系列
大功率落地式加热系列(LCD)
大功率落地式(LCD)
大功率落地式(LED)
高频台式系列(LCD)
低频台式系列(塑壳LED)
双频台式加热系列(LCD)
双频台式系列(LCD)
功率可调台式加热系列(LCD)
鼓风干燥箱
马弗炉
真空干燥箱
电热恒温干燥箱
鼓风干燥箱-干热**箱
精密恒温鼓风干燥箱
台式电热恒温鼓风干燥箱
电热恒温鼓风干燥箱(高温烘箱)
电热恒温鼓风干燥箱
分光光度计
火焰光度计系列
紫外可见光系列
可见光系列
环保仪器
农业检测仪器
林业及植保器械
农产品质检仪器
粮食食品检化验仪器
植物生理仪器
种子检验仪器
土壤类仪器
水果糖度计
水分仪系列
其他水分仪
化工原料水分仪
纸张水分仪
木材水分仪
当前位置:
首页
>>>
技术文章
>
技术文章
显微镜的光学原理及性能
显微镜的光学原理及性能
传统的光学显微镜主要由光学系统及支撑它们的机械结构组成,光学系统包括物镜、目镜和聚光镜,都是由各种光学玻璃做成的复杂化了的放大镜。物镜将标本放大成像,其放大倍率M物由下式决定:M物=Δ∕f'物 ,式中f'物是物镜的焦距,Δ可理解为物镜与目镜间的距离。目镜将物镜所成之像再次放大,成一个虚像在人眼前250mm处供人观察,这是多数人感觉*舒适的观察位置,目镜的倍率M目=250/f'目,f'目是目镜的焦距。显微镜的总放大倍率是物镜与目镜的乘积,即M=M物*M目=Δ*250∕f'目*f;物。可见,减小物镜及目镜焦距将使总放大倍率提高,这是用显微镜可以看到**等微生物的关键,也是其与普通放大镜的区别所在。
那么,是否可以设想无限制地减少f’物f’目,以便提高放大倍率,使我们能看到更加细微的物体呢?回答是否定的!这是因为用以成像的光本质是一种电磁波,因而在传播过程中免不了产生衍射和干涉现象,就像日常所见水面的波纹遇到障碍时能绕行,两列水波相遇时能互相加强或削弱一样。当从一个点状的发光物点发出的光波进入物镜时,物镜的边框阻碍了光的传播,产生衍射和干涉,经物镜后无法再会集于一点,而是形成有一定大小的光斑,外围还有强度微弱并逐渐减弱的一系列光环,我们称中心亮斑为艾里斑,两个发光点靠近到一定距离时两光斑就会重叠,直至无法确认为两个光斑。瑞利提出了一个判定标准,认为当两光斑中心相距等于艾里斑半径时,两光斑是能分辨的,经计算,这时候两个发光点间的距离e=0.61入∕n.sinA=0.61入∕N.A,式中,入为光波波长,人眼可接收的光波波长约为0.4—0.7um,n为发光点所处介质的折射率,如处在空气中,n≈1,处在水中,n≈1.33,而A为发光点对物镜边框张角之半,N.A称为物镜的数值孔径。从上式可见,物镜能分辨的两点间的距离受到了光的波长和数值孔径的限制,由于人眼视觉*敏锐的波长约为0.5um,而A角不可能超过90度,sinA总小于1,对于可用的透光介质*大折射率约为1.5,故 e值始终大于0.2um,这是光学显微镜能分辨的*小极限距离。通过显微镜放大成像,若想将能被具有某些N.A值的物镜分辨率的物点间距e放大到足以被人眼分辨,则需M.e≥0.15mm,此处0.15mm为实验得出的人眼能分辨的置于眼前250mm处两微物间的*小距离,故M≥(0.15∕0.61入)N.A≈500N.A ,为使观察不致太费力,M扩大一倍便足够了,即500N.A≤M≤1000N.A,是显微镜总倍率的合理选取范围,再大的总放大倍率是没有意义的,因为物镜数值孔径已经限制了*小可分辨距离,提高放大倍率已不可能分辨出更小的物体细节了。
成像衬度是光学显微镜的另一个关键问题,所谓衬度,即是像面上相邻部份间的黑白对比度或颜色差,人眼对于0.02以下的亮度差别是很难判定的,对颜色差别则稍微敏感一些。有些显微镜观察对象,如生物标本,其细节间亮度差别甚小,加之显微镜光学系统设计制造误差使其成像衬度进一步降低而难于分辨,此时,看不清物体细节,不是总放大倍率过低,也不是物镜数值孔径太小,而是由于像面衬度太低的缘故。
多少年来,人们为提高显微镜的分辨能力和成像衬度付出了艰辛的劳动,随着计算机技术和工具的不断进步,光学设计的理论和方法也在不断改进,加上原材料性能的提高,工艺和检测手段的不断完善,观察方法的**,使光学显微镜的成像质量已经接近衍射极限的完善程度,人们将用标本染色、暗场、相衬、荧光、干涉、偏光等观察技术,使得光学显微镜已能适应形形**标本的研究,虽然近年来电子显微镜,超声显微镜等放大成像仪器先后问世,在某些方面具有优势的性能,但在廉价、方便、直观、特别是适合生物活体的研究等方面仍无法与光学显微镜匹敌,光学显微镜仍然牢固地占据着自己的阵地。另一方面,与激光、计算机、新材料技术、信息技术相结合,古老的光学显微镜正焕发青春,显示了旺盛的生命力,数码显微镜、激光共焦扫描显微镜、近场扫描显微镜、双光子显微镜及具有各种新的功能或能适应各种新的环境条件的仪器层出不穷,更加扩大了光学显微镜的应用领域,作为*新的例子。从火星探测车上传回的岩层显微图片是多么令人振奋!我们完全可以相信,光学显微镜将会以更新的姿态,造福人类。
上一篇:
对电子天平的校准以减小误差
下一篇:
进口仪器对比国产仪器
若网站内容侵犯到您的权益,请通过网站上的联系方式及时联系我们修改或删除