您好,欢迎来到仪表展览网!
请登录
免费注册
分享
微信
新浪微博
人人网
QQ空间
开心网
豆瓣
会员服务
进取版
标准版
尊贵版
|
设为首页
|
收藏
|
导航
|
帮助
|
移动端
|
官方微信扫一扫
微信扫一扫
收获行业前沿信息
产品
资讯
请输入产品名称
噪声分析仪
纺织检测仪器
Toc分析仪
PT-303红外测温仪
转矩测试仪
继电保护试验仪
定氮仪
首页
产品
专题
品牌
资料
展会
成功案例
网上展会
词多 效果好 就选易搜宝!
时代集团公司
新增产品
|
公司简介
注册时间:
2004-05-02
联系人:
电话:
Email:
首页
公司简介
产品目录
公司新闻
技术文章
资料下载
成功案例
人才招聘
荣誉证书
联系我们
产品目录
兆欧表
兆欧表3125
兆欧表3453
兆欧表3455-20
兆欧表3124
兆欧表3451
兆欧表F1508
兆欧表F1587
兆欧表3454
兆欧表3454-11
超声波测厚仪
超声波测厚仪TT100
超声波测厚仪TT110
超声波测厚仪TT120
超声波测厚仪TT130
超声波测厚仪T300
超声波测厚仪TT310
超声波测厚仪TT320
超声波测厚仪TT340
超声波测厚仪AD3253B
超声波测厚仪26MG
风速计
风速仪AVM-01
风速仪AVM-03
风速仪AVM-05
风速仪AVM-07
风速仪6004
风速仪KA22
风速仪KA31
风速仪KA41
风速仪A531
风速计A541
硬度计
里氏硬度计TH120
里氏硬度计TH110
里氏硬度计TH140
里氏硬度计TH160
洛氏硬度计HR150A
洛氏硬度计TH300
洛氏硬度计TH310
洛氏硬度计TH320
橡胶硬度计TH200
橡胶硬度计TH210
涂层测厚仪
涂层测厚仪MPOR
涂层测厚仪TT220
涂层测厚仪TT230
涂层测厚仪TT240
涂层测厚仪TT260
涂层测厚仪MP10
涂层测厚仪MP20
涂层测厚仪MP30
涂层测厚仪600BF
涂层测厚仪6000
粗糙度仪
粗糙度仪TR100
粗糙度仪TR110
粗糙度仪TR200
粗糙度仪泰勒3+
蓄电池检测仪
蓄电池检测仪3554
测振仪
测振仪VM63A
测振仪VM-82
测振仪VM-70
测振仪VA-11
测振仪VM-2004
测振仪TV300
温度计
测力计
电力参数测试仪
功率计
电力质量分析仪3169-21
电力质量分析仪3169-20
电力质量分析仪3196
电力质量分析仪3286-20
电力质量分析仪F43B
功率计3197
电力计3333
电力计3332
电力计3193
记录仪
记录仪8847
记录仪8870-21
波形记录仪8807
波形记录仪8808
波形记录仪8835
照度计
照度计TES-1330A
照度计TES-1332A
照度计TES-1334A
照度计TES-1339
照度计3423
红外热像仪
红外测温仪
红外测温仪MT4
红外测温仪ST20
红外测温仪ST60
红外测温仪ST80
红外测温仪MX2
红外测温仪3iLRL3
红外测温仪3iLRSC
红外测温仪3iLRSC/L2
红外测温仪3i1MSC
红外测温仪3i1ML3
转速表
转速表RM1500
转速表RM1501
转速表HT4100
转速表HT3100
转速表TM5010K
转速表DT105
转速表DT107
转速表DT205
噪音计
噪音计TES-1350A
噪音计TES-1352
噪音计TES-1357
噪音计TES-1358
噪音计NL-27
频闪仪
频闪仪DB230
频闪仪DT725
电子天平
示波器
数字存储示波器GDS810S
数字存储示波器GDS810C
数字存储示波器GDS806S
数字存储示波器GDS806C
数字存储示波器GDS40S
数字存储示波器GDS840C
数字存储示波器TDS1002
数字存储示波器TDS2002
数字存储示波器TDS2012
数字存储示波器TDS2014
当前位置:
首页
>>>
技术文章
>
技术文章
阻抗和阻抗匹配
阻抗和阻抗匹配
一、输入阻抗
输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源
U
,测量输入端的电流
I
,则输入阻抗
Rin
就是
U/I
。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。
输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取*大输出功率时,也要考虑 阻抗匹配问题
二、输出阻抗
无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为
0
,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计*特别需要注意
但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻
r
的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻
r
,就是(信号源
/
放大器输出
/
电源)的内阻了。当这个电压源给负载供电时,就会有电流
I
从这个负载上流过,并在这个电阻上产生
I×r
的电压降。这将导致电源输出电压的下降,从而限制了*大输出功率(关于为什么会限制*大输出功率,请看后面的“阻抗匹配”一问)。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的
三、阻抗匹配
阻抗匹配是指
信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。
我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r)
,可以看出,负载电阻
R
越小,则输出电流越大
。负载R上的电压为:Uo=IR=U/[1+(r/R)]
,可以看出,负载电阻
R
越大,则���出电压
Uo
越高
。再来计算一下电阻R消耗的功率为:
P=I
2
×R=[U/(R+r)]
2
×R=U
2
×R/(R
2
+2×R×r+r
2
)
=U
2
×R/[(R-r)
2
+4×R×r]
=U
2
/{
[(R-r)
2
/R]
+4×r}
对于一个给定的信号源,其内阻
r
是固定的,而负载电阻
R
则是由我们来选择的。注意式中
[(R-r)
2
/R]
,当
R=r
时,
[(R-r)
2
/R]
可取得*小值
0
,这时负载电阻
R
上可获得*大输出功率
Pmax=U
2
/(4×r)
。即,当负载电阻跟信号源内阻相等时,负载可获得*大输出功率,这就是我们常说的阻抗匹配之一
。
对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配
。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载
R
;如果我们需要输出电压大,则选择大的负载
R
;如果我们需要输出功率*大,则选择跟信号源内阻匹配的电阻
R
。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。
在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。
例如,常用的闭路电视同轴电缆特性阻抗为
75Ω
,而一些射频设备上则常用特征阻抗为
50Ω
的同轴电缆。另外还有一种常见的传输线是特性阻抗为
300Ω
的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为
75Ω
,所以
300Ω
的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个
300Ω
到
75Ω
的阻抗转换器(一个塑料封装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大)。它里面其实就是一个传输线变压器,将
300Ω
的阻抗,变换成
75Ω
的,这样就可以匹配起来了。这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。
为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配,如果阻抗不匹配会有什么**后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。
当阻抗不匹配时,有哪些办法让它匹配呢?**,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。**,可以考虑使用串联
/
并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联
/
并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,
485
总线接收器,常在数据线终端并联
120
欧的匹配电阻。
为了帮助大家理解阻抗不匹配时的反射问题,我来举两个例子:假设你在练习拳击——打沙包。如果是一个重量合适的、硬度合适的沙包,你打上去会感觉很舒服。但是,如果哪**我把沙包做了手脚,例如,里面换成了铁沙,你还是用以前的力打上去,你的手可能就会受不了了——这就是负载过重的情况,会产生很大的反弹力。相反,如果我把里面换成了很轻很轻的东西,你一出拳,则可能会扑空,手也可能会受不了——这就是负载过轻的情况。另一个例子,不知道大家有没有过这样的经历:就是看不清楼梯时上
/
下楼梯,当你以为还有楼梯时,就会出现“负载不匹配”这样的感觉了。当然,也许这样的例子不太恰当,但我们可以拿它来理解负载不匹配时的
上一篇:
电参数测试仪的选型
下一篇:
硬度的测量方法和应用
若网站内容侵犯到您的权益,请通过网站上的联系方式及时联系我们修改或删除