您好,欢迎来到仪表展览网!
请登录
免费注册
分享
微信
新浪微博
人人网
QQ空间
开心网
豆瓣
会员服务
进取版
标准版
尊贵版
|
设为首页
|
收藏
|
导航
|
帮助
|
移动端
|
官方微信扫一扫
微信扫一扫
收获行业前沿信息
产品
资讯
请输入产品名称
噪声分析仪
纺织检测仪器
Toc分析仪
PT-303红外测温仪
转矩测试仪
继电保护试验仪
定氮仪
首页
产品
专题
品牌
资料
展会
成功案例
网上展会
词多 效果好 就选易搜宝!
时代集团公司
新增产品
|
公司简介
注册时间:
2004-05-02
联系人:
电话:
Email:
首页
公司简介
产品目录
公司新闻
技术文章
资料下载
成功案例
人才招聘
荣誉证书
联系我们
产品目录
兆欧表
兆欧表3125
兆欧表3453
兆欧表3455-20
兆欧表3124
兆欧表3451
兆欧表F1508
兆欧表F1587
兆欧表3454
兆欧表3454-11
超声波测厚仪
超声波测厚仪TT100
超声波测厚仪TT110
超声波测厚仪TT120
超声波测厚仪TT130
超声波测厚仪T300
超声波测厚仪TT310
超声波测厚仪TT320
超声波测厚仪TT340
超声波测厚仪AD3253B
超声波测厚仪26MG
风速计
风速仪AVM-01
风速仪AVM-03
风速仪AVM-05
风速仪AVM-07
风速仪6004
风速仪KA22
风速仪KA31
风速仪KA41
风速仪A531
风速计A541
硬度计
里氏硬度计TH120
里氏硬度计TH110
里氏硬度计TH140
里氏硬度计TH160
洛氏硬度计HR150A
洛氏硬度计TH300
洛氏硬度计TH310
洛氏硬度计TH320
橡胶硬度计TH200
橡胶硬度计TH210
涂层测厚仪
涂层测厚仪MPOR
涂层测厚仪TT220
涂层测厚仪TT230
涂层测厚仪TT240
涂层测厚仪TT260
涂层测厚仪MP10
涂层测厚仪MP20
涂层测厚仪MP30
涂层测厚仪600BF
涂层测厚仪6000
粗糙度仪
粗糙度仪TR100
粗糙度仪TR110
粗糙度仪TR200
粗糙度仪泰勒3+
蓄电池检测仪
蓄电池检测仪3554
测振仪
测振仪VM63A
测振仪VM-82
测振仪VM-70
测振仪VA-11
测振仪VM-2004
测振仪TV300
温度计
测力计
电力参数测试仪
功率计
电力质量分析仪3169-21
电力质量分析仪3169-20
电力质量分析仪3196
电力质量分析仪3286-20
电力质量分析仪F43B
功率计3197
电力计3333
电力计3332
电力计3193
记录仪
记录仪8847
记录仪8870-21
波形记录仪8807
波形记录仪8808
波形记录仪8835
照度计
照度计TES-1330A
照度计TES-1332A
照度计TES-1334A
照度计TES-1339
照度计3423
红外热像仪
红外测温仪
红外测温仪MT4
红外测温仪ST20
红外测温仪ST60
红外测温仪ST80
红外测温仪MX2
红外测温仪3iLRL3
红外测温仪3iLRSC
红外测温仪3iLRSC/L2
红外测温仪3i1MSC
红外测温仪3i1ML3
转速表
转速表RM1500
转速表RM1501
转速表HT4100
转速表HT3100
转速表TM5010K
转速表DT105
转速表DT107
转速表DT205
噪音计
噪音计TES-1350A
噪音计TES-1352
噪音计TES-1357
噪音计TES-1358
噪音计NL-27
频闪仪
频闪仪DB230
频闪仪DT725
电子天平
示波器
数字存储示波器GDS810S
数字存储示波器GDS810C
数字存储示波器GDS806S
数字存储示波器GDS806C
数字存储示波器GDS40S
数字存储示波器GDS840C
数字存储示波器TDS1002
数字存储示波器TDS2002
数字存储示波器TDS2012
数字存储示波器TDS2014
当前位置:
首页
>>>
技术文章
>
技术文章
新型数字示波器的应用
为帮助工程师解决测试挑战,《电子工程专辑》网站日前特别推出了“新型数字示波器的应用”专题研讨论坛,并邀请到安捷伦科技公司电子仪器与系统事业部全球市场经理Johnnie Hancock及亚太区示波器和数字电路测试业务开发经理杜吉伟担任论坛嘉宾,工程师就新型数字示波器的应用与专家进行了交流。我们现将论坛中的精彩问答以l0个问答的形式刊出,希望能使更多的工程师从中受益。 示波器一直是工程师设计、调试产品的好帮手。但随着计算机、半导体和通信技术的发展,电路系统的信号时钟速度越来越快,信号上升时间也越来越短,导致因底层模拟信号完整性问题引发的数字错误日益突出。针对这些新的测试挑战,示波器供应商不断推出了性能更好的数字示波器。但要想准确快速地对系统信号进行分析,测量时还有很多新的因素必须考虑。如仪器速度能否跟上被测信号的变化、带宽是否足够、测量方**不会引入干扰,甚至还有所使用的探头是否合适等等。 下面是本次论坛中一些有代表性,同时也是工程师比较关注的问题及专家的解答,如果您对本文及观点有其它意见与建议,欢迎和我们联系。 问题1:每一台示波器都有一个频率范围,例如10M、60M、100M...我手头上使用的示波器标称为60MHz,是不是可以理解为艺*大可以溯到60MHz,可我用它测4.1943MHz的方波时都测不到,总是什么原因呢? 答:60MHz带宽示波器,并不意味着它可以很好地测量60MHz的信号。根据示波器带宽的定义,如果输入峰峰值为lV的60MHz正弦波到60MHz带宽示波器上,那么您在示波器上将可以看到0.707V的信号(30%幅值测量误差)。如果测试方波,选择示波器的参考标准应是信号上升时间,示波器带宽=0.35/信号上升时间×3,此时您的上升时间测量误差为5.4%左右。 示波器的探头带宽也很重要,若使用的示波器探头包括其前端附件构成的系统带宽很低,将会使示波器带宽大大下降。如若使用20MHz带宽的探头,则能实现的*大带宽是20MHz,如果在探头前端使用连接导线,将会进一步降低探头性能,但对4MHz左右方波不应有太大影响,因为速度不是很快。 另外,还要看一下示波器使用手册,有的60MHz示波器在1:1设置下,其实际带宽将会锐减到6MHz以下,对于4MHz左右的方波,其三次谐波是12MHz,五次谐波是20MHz,如果带宽降到6MHz,对信号幅值衰减很大,即使能看到信号也**不是方波,而是幅值被衰减了的正弦波。 当然,测不出信号的原因可能有很多种,如探头接触不好(该现象很容易排除),建议用BNC电缆连接一函数发生器,检验该示波器本身有没有问题,探头有没有问题,如有问题,可以和厂商直接联系。 问题2:存些瞬时信号稍纵即逝,如何捕捉并使其重现? 答:将示波器设置成单次采集方式(触发模式设置成Normal,触发条件设置成边沿触发,并将触发电平调到适当值,然后将扫描方式设置成单次方式),注意示波器的存储深度将决定您能采集信号的时间以及能用到的*大采样速率。 问题3:在PLL中周期抖动可以衡量一个设计的好坏,但是要**测量却非常困难,存什么方法和技巧吗? 答:在使用示波器时,要注意其本身的抖动相关指标是否满足您的测试需求,如示波器本身的触发抖动指标等。同时要注意使用不同的探头和探头连接附件时,若不能保证示波器的系统带宽,测量结果也会不准确。另外关于PLL设置时间的测量,可使用示波器+USB-GPIB适配器+软件选件来完成,也可以用较为便宜的调制域分析仪。 问题4:为什么我的示波器有时候抓不到经过放大后的启流信号呢? 答:如果信号的确存在,但示波器有时能抓到有时抓不到,这就可能和示波器的设置有关系。通常可将示波器触发模式设置成Normal,触发条件设置成边沿触发,并将触发电平调到适当值,然后将扫描方式设置成单次方式。如果这种方式还不行,那就可能是仪器出了问题。 问题5:如何测量电源纹波? 答:可以先用示波器将整个波形捕获,然后将关心的纹波部分放大来观察和测量(自动测量或光标测量均可),同时还要利用示波器的FFT功能从频域进行分析。 问题6:新型数字示波器怎样用于单片机开发? 答:I2C总线信号一般工作速率不会超过400kbps,*近也出现了几Mbps的芯片,有的示波器在设置触发条件时,无需顾及不同速率的影响,但对其它总线,如CAN总线,则需要先在示波器上设置CAN总��当前的实际工作速率,以便示波器能够正确理解协议并正确触发。若想对Inter-IC总线信号进行进一步的分析,如协议级分析,可使用逻辑分析仪,但相对来说价格比较高。 问题7:关于模拟和数字示波器此校的问题:1.模拟和数字示波器在观察波形的细部时,哪一个更具存优势呢(例如在过零点和峰值时,观察l%以下寄生波形)?2.数字示波捞一般提供在线显示均方根值,它的精度一般是多少呢? 答:1.观察1%以下寄生波形,无论是模拟示波器还是数字示波器,观察精度都不是很好。模拟示波器的垂直精度未必比数字示波器更高,如某500MHz带宽的模拟示波器垂直精度是±3%,这并不比数字示波器(通常精度为l~2%)更具优势,而且对细节,数字示波器的自动测量功能比模拟示波器的人工测量更**。 2.对于示波器的幅值测量精度,很多人用A/D位数来衡量。实际上,随着您所用的示波器带宽、实际采样率设置等,它会有所变化。如果带宽不够,本身带来的幅值测量误差就很大,若带宽够了,采样设置很高,实际的幅值测量精度也不如采样率低时候的精度(您有时可参考示波器的用户手册,它可能会给出不同采样率下,示波器的A/D实际有效位数)。总的来讲,示波器测量幅值,包括均方根值的精度往往不如万用表,同理,测量频率它不如频率计数器。 问题8:毛刺触发指标有什么意义(例如5ns)呢?假如有一个l00MHz的示波器,测量的方波信号大约是l0M左右,而且是占空比l:l左右的方波,设想一下,一个10M的方波,它的正向或者负向的脉宽都是50ns,那么在什么样的情况下才能真正用到5ns这个性能呢? 答:毛刺/脉宽触发一般有以下两种典型的应用场合,一种是同步电路行为,如利用它来同步串行信号,或对于干扰非常严重的应用无法用边沿触发正确同步信号时,脉宽触发就是一个选择;另一种是用来发现信号中的异常现象,如因干扰或竞争引起的窄毛刺,由于该异常是偶发显现,所以必须用毛刺触发来捕获(也有一种方法是峰值检测方式,但是,峰值检测方法有可能受其*大采样率的限制,所以一般是只能看而不能测)。 在问题所提的例子当中,如果被测对象的脉冲宽度是50ns,而且该信号没有任何问题,也就是说没有因为干扰、竞争等问题而引起的信号畸变或者变窄,那么用边沿触发就可以同步该信号,而无需使用毛刺触发。根据不同的应用,未必会使用到5ns这个指标,一般用户将脉宽触发设置为1Ons~30ns。 问题9:选择示波器时,一般考虑*多的是带宽,那么在什么倩况下要对采样速率存 所考虑呢? 答:取决于被测对象。在带宽满足的前提下,希望*小采样间隔(采样率的倒数)能够捕捉到您需要的信号细节。业界有些关于采样速率经验的公式,但基本上都是针对示波器带宽得出的,实际应用中,*好不用示波器测相同频率的信号。若在选型时,对正弦波选择示波器带宽应是被测正弦信号频率的3倍以上,采样率是带宽的4到5倍,也即实际上是信号的12到15倍;若是其它波形,要保证采样率足以捕获信号细节。 若您正在使用示波器,可通过以下方法验证采样率是否够用:将波形停下来,放**形,若发现波形有变化(如某些幅值)就说明采样率不够,否则无碍。另外也可用点显示来分析采样率是否够用。 问题10:如何理解“考核波形采样率够不够时,将波形停下来,放**彩,若发现波形有变化(如某些幅值)就说明采样率不够,否则无碍。也可用点显示来分折采样率是否够用。”这一段话? 答:我有幸给用户做过实测,曾亲历这种现象。 当时被测对象是一种看上去很随机且高速变化的信号,用户将触发电平设在-13V左右。波形采集下来后想放大测量细节时,却发现改变示波器时基(SEC/DIV)设置时,信号幅值突然变小,我当时将示波器改成点显示,发现好像是点数(存储深度)不够,但我比较点显示和矢量显示后,发现若矢量显示有一定可信性,那么就是当前的两个采样间隔(采样率的倒数)中信号有突变,但未能被采集到(采样间隔不够细,即采样率不够高)。我换了一台同样存储深度但采样率较高的示波器,发现问题消失了。 存储深度也会影响示波器能用到的实际*大采样率。存储深度太浅可能是个问题,因为存储深度可能限制能实际用到的*大采样速率,但实质上是采样率不够,丢失了信号细节。存储深度不够深,可能会导致实际采样率不高,这跟厂商提供的指标关系不大。
上一篇:
绝缘电阻的正确测量
下一篇:
常用维氏、布氏、洛氏硬度的换算表
若网站内容侵犯到您的权益,请通过网站上的联系方式及时联系我们修改或删除