第三节 基体改进的机理(1)
选择适当的无机试剂、有机试剂或活性气体作石墨炉原子吸收分析中的基体改进剂,可有效地消除干扰,提高灵敏度和改善精密度。但是,目前有关基体改进效应的机理方面的研究尚不多,尚无比较成熟的理论来解释众多的基体改进效应。基体改进通过七条途径降低干扰:
(1)使基体形成易挥发的化合物——降低背景吸收。
(2)使基体形成难解离的化合物——避免分析元素形成易挥发难解离的卤化物,降低灰化损失和气相干扰。
(3)使分析元素形成易解离的化合物——避免形成热稳定碳化物,降低凝相干扰。
(4)使分析元素形成热稳定的化合物——避免分析元素的挥发,防止灰化损失。
(5)使分析元素形成热稳定的合金——避免分析元素的挥发,防止灰化损失。
(6)形成强还原性环境——改善原子化过程。
(7)改善基体的物理特性——防止分析元素被基体包藏,降低凝相干扰和气相干扰。
一、基体形成易挥发的化合物
氯化物的背景吸收干扰,通常借助***来控制。Ediger首先提出,***可消除氯化钠的干扰,原因在于石墨炉内发生下述化学反应:
NH4NO3+NaCl——NH4Cl+NaNO3表17—1列出了该反应相关的四种化合物的熔点和沸点。
表17—1反应物与反应产物的熔点和沸点
化合物 | NaCl | NH4N03 | NaN03 | NH4Cl |
熔点/℃ 沸点/℃ | 801 1431 | 170 210(分解) | 307 380(分解) | 335(升华) |
从表17—1中的数据可以看出,基体改进后形成的硝酸钠、氯化铵及过剩的***,在400℃都能蒸发。在镉的共振线波长228.8nm处测量0.15mg氯化钠的背景吸收,发现不加***时其吸光度大于0.9,这是因为氯化钠的熔点近800℃,在所用的灰化温度300℃下不能将氯化钠排除,到了原子化阶段蒸发出来而产生背景吸收。在基体改进剂存在时;由于氯化钠已转化为易挥发的化合物,在300℃时也能大量被排除,故在原子化阶段只有少量剩余的氯化钠产生背景吸收(吸光度为0.15),这样小的背景吸收信号很容易用背景校正器扣除。用***作改进剂可以消除**组氯化物(NaCl,MgCl2,KCl)的干扰。
生物样品中的铅、铜、金和天然水中铅、锰和锌等元素的测定中,***可降低和消除背景吸收干扰。
碱金属氯化物的干扰可以通过加入某些无机酸来降低。硝酸可降低氯化钠对铅的干扰,是由于生成的氯化氢在干燥灰化过程中易被除去,而生成的硝酸钠背景吸收很小。这是从降低氯化物引起的背景吸收角度来考虑的。另一方面,硝酸的加入使铅转变成氧化物型而避免挥发性氯化铅所引起的挥发损失。
过渡金属氯化物的干扰,可用高沸点的酸来控制。磷酸和硫酸之所以可消除氯化铜对铅和镍的干扰,是因为除了生成的氯化氢易挥发除去之外,生成的磷酸盐和硫酸盐的背景吸收很小。
钢铁中的铅在没有氢气存在时,铅以氯化物的形式挥发。如果通入适量的氢气,则由于发生下述反应,生成了易挥发的氯化氢从而避免了铅的挥发损失。
FeCl3(g)+3/2H2(g)一Fe+3HCl
一些作者在灰化阶段往石墨炉内气中掺入适量氢气或氧气,可降低原子化阶段的光散射与分子吸收干扰。氧气的掺入将促使有机物的氧化,使有机物基体在灰化阶段完全烧尽。例如,碳链长达C18的类脂化合物,当石墨炉的保护气体仅为氮气时,需要在750℃灰化热解,若掺入氧气(1:1),只需在490℃灰化90 s就足以将类脂化合物完全氧化。
从以上讨论可知,借加入适当的基体改进剂或掺入氢气或氧气,可使基体干扰成分形成易挥发的基体化合物,则降低了基体迅速分解的温度(T1)和背景可被氘灯扣除的*低灰化温度(T2),保证T1<T3,T2<T3,故可降低背景吸收干扰。 基体形成难解离的化合物样品中过量氯化物对待测元素的吸收产生的化学干扰,大多是由于形成了较易挥发而在气相中解离不完全的待测元素氯化物造成的。其决定性的因素是氯化物稳定性。测定氯化物基体中的铅时,5μg氯化镁、氯化钙、氯化锶、氯化钡对铅产生抑制效应,其抑制程度正好按MgCI[Ed=(314±13)kJ/mol],CaCl[Ed=(393±8)kJ/mol],SrCl[Ed=(402±8)kj/mol],BaCl[Ea=(444±8)kJ/mol]解离能增加的次序而降低。由此可以得出其解离能较大的氯化物对分析元素的干扰较小。10μg NaCl[Ed(410±8)kJ/mo1]几乎完全抑制铊的信号(TlCl的Ed=368 kJ/mol)。L’vov研究了LiN03对0.1%NaCl介质中铊(1μg/mL)的释放作用。当无LiN03存在时,铊的吸收信号完全被NaCl抑制,随着LiN03浓度增大,吸收信号逐步恢复到用纯铊溶液达到的水平。LiN03对铊吸收信号的增感,原因在于将解离能较小而干扰较大的基体氯化钠转变为解离能较大的氯化锂。
三、分析元素形成易解离的化合物
L’VOV认为石墨管中碳是主体元素,利用原子化始现温度Tapp值推测,Li,Na,K,Rb,Cs,Zn,Cd,Ga,In,Sn,Pb,As,Sb,Bi,Se,Mg,Ca,Sr,Ba,Mn,Be,Al,V,Ti,Ge,si,sc等27个元素存在着稳定的碳化物,其形成热-△H○(MCn)>42kJ/mol。稳定碳化物的生成使得记忆效应大,原子吸收峰低而宽。
对于易形成难熔碳化物的元素,可加入某种试剂与分析元素形成比较易熔易分解的化合物,降低原子化温度。例如,硅与石墨炉中的碳易形成高熔点的碳化硅。难熔的碳化硅(SiC)分解温度高达2700℃,这必须采取高温原子化,势必给石墨炉原子吸收分析带来困难。Rawa等用HGA-2200型石墨炉测定水中微量硅时往水样中加入CaO,则提高了硅的灵敏度。钙对硅的增感效应归因于硅化钙的形成。由于硅化钙的形成减少了碳化硅的生成量,而硅化钙(熔点1245℃)本身较碳化硅易熔易分解,因而提高了硅的原子化效率,原子化温度将向低温位移。由于钙与硅需在1000℃以上才发生反应,故硅的灵敏度随灰化温度的提高(1000℃->1500℃)而增强。基于防止分析元素形成碳化物,钙可用来提高Ba,Be,si,sn的灵敏度。
借助基体改进剂使分析元素形成较易熔易分解的化合物而减少或避免形成热稳定的碳化物,降低了原子化温度,改善了原子化效率,这给测定容易形成热稳定碳化物的元素提供了一条途径。
四、分析元素形成热稳定的化合物
石墨炉原子吸收测定易挥发金属元素的主要困难在于灰化损失和背景吸收干扰。灰化温度高,易导致分析元素的损失;灰化温度低,基体烧不尽,造成在石墨炉内产生分析元素原子与基体成分的时间重叠。
汞在室温下即挥发,难于用石墨炉原子吸收测定。近几年基体改进剂已用来克服汞在干燥和灰化过程中的严重损失。将硫化铵溶液加到汞的稀硝酸溶液中,使汞转化为硫化汞,可使汞的允许灰化温度(T3)提高到300℃。
有硫化铵的类似作用。盐酸和过氧化氢也可以稳定汞。汞在石墨炉内相当浓厚的盐酸气氛中生成了氯化汞而防止了汞的损失,对汞呈现出一定的增感效应。镉是易挥发的元素。硫酸铵对牛肝中镉的稳定作用如图17—2所示。牛肝中的镉,当灰化温度超过300℃时,镉就开始出现损失。若加入硫酸铵,镉的允许灰化温度可提高到650℃,原因在于牛肝中易挥发的镉化合物同硫酸铵发生了化学反应,生成了热稳定的硫酸镉而防止了镉在牛肝热解灰化过程中的损失。因此,可在T3>T2的条件下选择较高的灰化温度,既消除了背景吸收干扰,又防止了镉的灰化损失。
镍可稳定多种易挥发的金属元素。镍可以把硒的允许灰化温度从300℃提高到1200℃。Ediger认为镍对硒的稳定作用是由于生成了热稳定的硒化物。
Kirkbright等对石墨炉中硒化镍的形成机理作了进一步的探讨。作者认为,如果形成硒化镍,则预先生成二价硒化物是必要的。按照文献所讲,二价硒的化合物可由六价硒化物被碳还原或由元素在高温下直接结合而成。因此,六价硒化合物的存在应是前提。实验证实,重铬酸钾和高锰酸钾对溶液中硒(Ⅳ)有稳定作用。而三价铬和二价锰对硒(Ⅳ)无稳定作用。根据实验结果和对有关氧化还原反应自由能的计算,认为六价铬和七价锰可将硒(Ⅳ)氧化成硒(Ⅵ),然后由碳还原成硒(Ⅱ),结果形成了热稳定的镍的硒化物。
《石墨炉基体改进技术(三)》来源:分析测试百科网