首页 >>> 公司新闻 >

公司新闻

智能变电站继电保护自动测试平台

0 引言

根据智能电网建设的整体部署,国家电网公司积极开展智能变电站的研究及试点工程。智能变电站以IEC 61850标准为基础,能够实现变电站内智能设备间信息共享和互操作,自动完成信息采集、测量、控制、保护和检测等基本功能。和传统变电站不同,智能变电站要实现数字化、网络化以及应用大量的智能决策系统,其二次系统不再是仅由模拟量构建的回路;另一方面,随着高速处理器和电子式互感器的推广使用,以及计算机技术、通信技术、量测技术和嵌入式技术的飞速发展,各种新技术在继电保护装置中的应用,大大提升了继电保护装置的性能,装置也更加智能化,这些对继电保护测试提出更高的要求[1-4]。

在目前变电站测试领域,继电保护的检测与调试还停留在传统保护测试的模式上,测试人员手动操作数字保护测试仪,手动设置故障参数,监测保护装置的动作情况,验证保护定值及逻辑功能,记录测试结果并进行判断分析。在整个测试过程中,测试人员的个人经验和工作状态对测试结果有较大影响,且自动化测试程度低,测试周期长。

另一方面,不同厂家的测试设备在控制软件、控制接口等方面差异较大,这对在智能变电站实现信息共享和互操作带来巨大挑战,现有的数字化保护测试软件,不能与保护装置进行通信,实现定值的读取和修改、压板的读取和修改、保护测量值的读取、保护事件报告的解析、遥控操作等功能。

在智能电子设备(IED)、间隔及变电站等应用层面建立统一的信息模型和信息交换模型,以加强二次设备之间的互操作性,体现在测试领域即搭建

智能变电站继电保护自动测试平台。本文提出一种智能变电站数字保护装置的自动测试平台及其构建方法。该平台采用分层结构和模块化的思想,能实

现对保护装置的高效率闭环自动测试,采用开放式结构,对不同种类的保护装置,提供二次开发平台以编辑测试方案,测试完成后,能自动形成标准格式的测试报告,能克服保护测试中过分依赖个人能力、测试工作效率低下、测试数据格式不统一的问题。

1 自动测试平台总体设计思路

自动化测试必须满足以下基本要求:测试标准化、报告标准化、测试提示信息标准化、测试过程透明化、测试过程的闭环性和良好的扩展性。分别体现为硬件结构设计和软件结构系统设计。硬件结构设计反映了自动测试平台的整体布局,实现测试控制端与电子设备(数字保护测试仪与数字保护装置)的有效隔离;软件结构系统设计为自动测试平台的核心,采用分层结构与模块化的设计理念,实现自动的闭环测试[5-10]。

1.1 自动测试平台硬件结构

自动测试平台应能实现*大程度上的信息共享和便捷的数据操作,通过测试终端(测试机/个人电脑(PC))实现信息采集、测量、控制、保护和检测等各种测试命令的各种流程,并在测试终端形成标准化的测试报告,真正实现“一键式”便捷控制,硬件结构如图1所示。测试机或者 PC作为自动保护测试平台的控制终端,连接到交换机,数字保护装置测试仪与数字保护装置均接入交换机以形成通信链路,数字保护测试仪和被测数字保护装置之间通过光纤连接[11]。

1.2 自动测试平台软件结构框架

测试终端安装自动测试平台软件,自动测试平台的软件架构采用分层结构和模块化的设计思想,软件结构框架如图2所示。软件系统在层次上划分为3层,分别为测试仪接口层、自动测试层和测试方案开发层[12]。测试仪接口层即测试仪控制接口,为组件对象模型(COM)接口,提供被测保护装置的全部测试功能服务接口;自动测试层包括测试控制中心模块、制造报文规范(MMS)通信模块;测试方案开发层包括测试方案开发模块和测试子模板库、设备数据模型和测试方案数据接口库。测试方案开发模块为一个二次开发系统,可以针对被测数字保护装置进行二次开发,编辑测试方案和测试子模板。

2 自动测试平台层次组成和模块功能

2.1 测试仪器接口层

为实现自动测试平台的通用性和智能化,平台本身必须具有良好的可扩展性,必须适应不同类型的被测装置,为解决这一问题,需要开发设计测试仪接口层,本接口为开放 COM 接口,能供自动测试控制中心调用,实现数字保护装置的各种保护测试功能[13-14];测试仪控制接口使用 Windows消息来通知测试控制中心模块测试状态的变化,例如连接测试仪器成功、开始测试、测试完成、测试异常信息等。

在实际应用中,可以根据被测数字保护装置的保护功能原理分析出测试方法。因此,在测试仪控制接口上,设计保护测试功能测试执行对象和保护测试功能执行对象的管理对象。保护测试功能测试执行对象用于实现对测试仪的控制,供自动测试控制中心调用以实现数字保护电气量的测试;保护测试功能执行对象的管理对象用于实现保护测试功能测试执行对象的创建和测试仪控制接口模块的关闭[15]。

2.2 测试方案开发层

不同的被测装置和测试方法往往意味着不同的测试方案,因此测试方案的独立开发在测试软件架构上尤为重要,因此设计测试方案开发层,实现被测保护装置的测试方案和测试子模板的二次开发,即根据设备数据模型、测试子模板库和测试方案数据接口库生成测试方案[16-17]。

2.2.1 设备数据模型设计

设备数据模型为IED 能力描述文件(ICD)/变电站配置描述语言(SCL)文件或者通过 MMS通信模块从数字保护装置枚举得到的装置各种数据集的详细信息。设备数据模型描述数字保护装置各种数据集的详细信息和特性曲线。具体而言,数据集主要包括测量数据集、遥信数据集、遥控数据集、定值数据集、压板数据集、保护事件数据集、告警数据集、装置参数数据集等;特性曲线,描述保护元件的动作边界定义以及相关保护测试功能的图形绘制定义。

2.2.2 测试子模板库设计

从测试原理出发,采用抽象化的方法,将测试方法相同的基础测试功能抽象为测试子模板。测试子模板描述数字保护装置的基础测试项目集合和对应的报告格式。子模板开放数据接口,数据接口描述子模板功能模块的必须参数数据(装置参数、定值、压板、控制字等)。子模板通过实例化(与具体数字保护实际的装置参数数据集、定值数据集、压板数据集等进行关联)动态生成具体的测试项目集合,从而生成数字保护装置的测试方案,大大提高数字保护

装置测试方案的开发效率。

测试子模板库,用来记录和保存数字保护装置的各功能测试的子模板,包括:线性度测试、保护功能测试(定值校验、动作值搜索、边界搜索等)、遥信

测试、遥控测试、报文异常测试等。

2.2.3 测试方案数据接口库设计

测试 方 案 数 据 接 口 库 为 可 扩 展 标 记 语 言(XML)文件,基于万维网联盟(W3C)的 XML1.0语法标准,文件保存数字保护装置的保护测试功能的信息,主要包括保护测试功能的属性数据、故障参数数据和结果参数数据,详细设计如下。

1)保护测试功能属性数据。保护测试功能名称name、保护测试功能ID。

2)故障参数数据。定义保护测试功能的故障参数,描述执行此保护测试功能需要设置的参数;参数需要定义的属性包括:数据名称 name、数据ID、数据类型datatype、单位 unit、缺省值 def-value、数据值value;故障参数数据的数据类型,例如:浮点数float、整数int、字 符 串 string、零 序 故 障 (值 域 为:AN,BN,CN)、变压器绕组数(值域为:双绕组、三绕组)等。

3)结果参数数据。为保护测试功能测试完成时形成的结果数据。

2.2.4 测试方案设计

一个装置测试方案包括两个文件:测试模板文件和报告模板文件,测试模板文件基于 XML语言,用来记录被测数字保护装置的设备数据模型、测试流程、测试项目定义;报告模板文件为 Word文档,用来描述标准报告格式并将测试模板中参数数据、结果数据自动写入 Word文档中的位置。测试方案开发包括测试模板编辑和报告模板编辑两个部分。测试模板编辑实现对被测装置的标准测试流程以及各测试项目的测试方法、测试结果判断方法编辑;报告模板编辑实现将测试模板中的数据(参数数据、结果数据等)与报告文档位置进行关联绑定,报告模板编辑程序设计为直接打开 Word程序,在 Word程序中执行相关的操作。

具体在实际应用中,测试方案开发模块首先从被测数字保护装置获得设备数据模型,分析设备数据模型的数据;然后从测试子模板库中获得与数据集数据相匹配的子模板,将数据集数据传递给子模板进行实例化,生成测试模板文件和报告模板文件,即完成测试方案的自动生成。也可以根据用户的需要手工编辑装置测试方案,即针对具体的数字保护装置型号,依据检验规程/标准定制被测装置的测试方案。

2.3 自动测试层

自动测试层实现自动测试,包括自动测试控制中心模块和 MMS通信模块。

2.3.1 自动测试控制中心设计思路

自动测试控制中心提供一个测试试验过程中人机对话的环境,自动测试控制中心打开测试方案,自动执行测试方案中测试项目,自动判断测试结果是否合格,并将测试结果保存至标准的报告模块中。

自动测 试 输 出 标 准 报 告、系 统 测 试 记 录 库、XML标准报告。

标准报告包括 Word,WPS,Excel,XML 格 式的文档报告。

系统测试记录库记录测试过程中的全部测试信息,包括测试项目的测试次数,每次测试的测试时间、测试时的故障参数数据、测试仪返回的测试结果数据、从数字保护装置读取的数据、修改保护装置的数据。从保护装置读取的数据包括定值、压板、测量值、装置参数、装置动作信息、告警信息等。修改保护装置的数据包括保护装置的装置参数、定值、压板。

XML标准报告为 XML格式,用于外部系统访问。

2.3.2 MMS通信模块设计思路

MMS通信模块通过 MMS与数字保护装置通信。MMS通信程序设计和开放标准 COM 接口,供自动测试程序调用。开放的接口包括命令控制接口、数据访问接口。命令控制接口包括定值的读取和修改、压板的投退操作、控制字的读取和修改、保护测量值的读取、装置参数的读取和修改;数据访问

接口实现读取被测数字保护装置的各种数据集数据和保护动作报告数据、告警报告数据等。

2.3.3 测试流程设计思路

测试控制中心打开测试方案,执行测试方案中测试项目的测试,不同测试项目的测试流程不同,详细设计如下。

1)保护功能测试项目测试流程设计

测试控制中心模块根据保护测试功能各故障参数计算公式,计算保护测试功能的参数值,执行故障参数计算脚本,实现特殊计算功能;调用测试仪控制接口模块,向测试仪控制接口模块传入保护测试功能的标示和保护测试功能参数数据,开始测试;等待测试仪控制接口模块返回测试结束消息;收到测试

结束消息后,从测试仪控制接口模块读取结果数据,执行测试结果判断脚本,判断测试结果是否合格;将测试结果数据填写到报告模板中。

测试过程中出现异常,测试控制中心模块根据异常的严重程度进行测试流程的调整,比如停止测试并播放告警音乐、暂停一段时间后继续测试等。

2)通信命令项目测试流程设计

测试控制中心模块发送通信命令和通信数据给MMS通信模块;MMS通信模块收到通信命令和通信数据后,与数字保护装置进行通信,执行通信命令;通信命令执行完毕,发送执行结果给测试控制中心模块;测试控制中心模块从 MMS通信模块读取结果数据,根据结果数据进行结果判断,填写结果数

据到报告模板中。

测试过程中出现异常,测试控制中心模块根据异常的严重程度进行测试流程的调整,比如将通信命令重复执行多次、停止测试并播放告警音乐。

3)硬件检测项目执行流程设计

测试控制中心模块根据硬件检测项目,弹出提示界面,提示用户进行相应的操作;如果有数据需要录入,等待用户录入数据;用户确认完成操作后,执行测试结果判断脚本,判断测试结果是否合格;将测试结果数据填写到报告模板中。

4)系统参数录入项目执行流程设计测试控制中心模块根据被测数字保护装置的试验相关参数录入项目的类型,弹出参数录入界面,显示需要录入的装置数据集数据;等待用户录入参数数据;用户确认操作后,执行结果判断脚本,判断结果是否合格;将需要填入报告的参数数据填入到报告模板中。



5 结语

本文提出一套数字保护装置的自动测试平台。介绍了具体的架构及实现方法,在设计上摆脱了传统数字化保护测试的单一思路,设计模式发生了很大变化,将更多具有针对性的重复工作交给自动测试的流水线程。能有效解决传统保护检测模式下测试工作繁琐重复和对测试人员依赖性大等问题,实现规范化、标准化和高效率化的闭环自动检验。










沪公网安备 31011402005121号