§3.1 热导池检测器(Thermal Conductivity Detector,TCD) 热导池检测器由于它结构简单,灵敏度适宜,稳定性较好,线性范围较宽,适用于无机气体和有机物,它既可做常量分析,也可做微量分析,*小检测量mg/ml数量级,操作也比较简单,因而它是目前应用相当广泛的一种检测器。§3.1.1 热导池检测器原理目前普遍采用四臂钨丝热导池,在四个圆形孔道内,安装上四根钨丝(或铼钨丝),利用此四根钨丝组成惠斯登电桥(见图3-1)通过一定量的恒定直流电流,此时钨丝发热,具有一定的温度,当载气流经钨丝并保持恒定的流速时,热丝表面被带走的热量是恒定的,即热丝阻值的变化也恒定,根据电桥平衡原理:
图3-1 四臂热导池电桥电路如有被测组分通入热导池,则钨丝周围的气体成分及浓度发生改变,由于不同的气体分子导热系数不同,分子量小的或分子直径小的气体具有高的热导率,相反,分子量大的或分子体积大的则有低的热导率,如果气体分子越多则浓度越大,传导的热量也越多,这样就使得气体热传导量发生改变,从而使钨丝的温度也发生改变,使钨丝的阻值变化,由于参考池仍是纯载气通过,而测量池为含有样品组分的载气通过,因此两组热导池引起阻值变化不一样,即
MN端的电位差ΔV≠0,因此有相应的电压信号输出,在一定条件下此信号大小与组分的浓度成正比。因此,利用测量此非平衡电压信号,即可确定待测组分的含量。这就是热导池检测器的的基本原理。
§3.2 氢火焰离子化检测器(Flame Ionization Detector,FID) 自五十年代以来,由于大力发展火箭技术,对燃烧和爆炸进行了深入的研究,发现有机物在燃烧过程中能产生离子,利用这一发现研究出氢火焰离子化检测器,此检测器自1958年创制以来得了广泛的应用,是目前国内外气相色谱仪必备检测器。氢火焰检测器是微量有机物色谱分析的主要检测器,它的主要特点是灵敏度高,基流小,*小检测量为ng/ml级,响应快,线性范围宽,对操作条件的要求不甚严格(如载气流速,检测器温度等),操作比较简单、稳定、可靠,因此它是目前*常用的检测器。§3.2.1 氢火焰离子化检测器的结构
氢火焰检测器是由离子室,离子头及气体供应三部分组成。图3-2是氢火焰离子化检测器的一般示意图
§3.3 电子捕获检测器(Electron Capture Detector,ECD) 电子捕获检测器是目前气相色谱中常用的一种高灵敏度、高选择性的检测器。它只对电负性(亲电子)物质有信号,样品电负性越强,所给出的信号越大,而对非电负性物质则没有响应或响应很小。电子捕获检测器对卤化物、含磷、硫、氧的化合物,硝基化合物、金属有机物、金属螯合物,甾类化合物。多环芳烃和共轭羰基化合物等电负性物质都有很高的灵敏度,其检出限量可达10-9~10-10克的范围。所以电子捕获检测器在环境保护监测、农药残留、食品卫生、医学、生物和有机合成等方面,都已成为一种重要的检测工具。§3.4 热离子检测器(The Thermionio detector,TID) 热离子检测器(TID),是专门测定有机氮和有机磷的选择性检测器,故又称氮磷检测器(NPD),它是在1964年由Karmen和Guiffrida在氢火焰离子化检测器的基础上发展起来的一种对氮、磷化合物有高选择性响应的检测器,利用TID还可以测定有机砷、硒、铝、锡等化合物。由于**代TID选用水溶性(如K2SO4、CsBr)易挥发的碱盐,碱盐的寿命在半年左右,故实用意义不大。经过十年徘徊,到1974,Kolb和Bischoff设计成功不溶性碱盐Rb2SiO3,因而大大提高了碱盐的寿命,使TID成为有实用价值的选择性检测器。八十年代,TID又从铷珠发展到陶瓷碱盐源,其碱盐源的成份可根据需要调整变化,使用添加剂提高了离子化的能力,碱盐加热不仅可采用火焰加热而且可在碱盐源中心绕上Ni/Cr丝以电加热热离子源,使热源温度可准确控制,因而,检测器的灵敏度、选择性、寿命和重现性均获得明显的改善。目前主要用于含氮、含磷农药的残留检测。§3.5 火焰光度检测器(Flame Photometric Detector,FPD) 火焰光度检测器是*近三十年才发展起来的一种高选择性和高灵敏度的新型检测器。它对含硫、含磷化合物的检测灵敏度很高。目前主要用于环境污染和生物化学等领域中,它可检测含磷含硫有机化合物(农药),以及气体硫化物,如甲基对硫磷,马拉硫磷,CH3SH,CH3SCH3,SO2,H2S等,稍加改变还可以测有机汞、有机卤化物、氯化物、硼烷以及一些金属螯合物等。
§4 主要参考文献§4.1 专著综合性的色谱专著,对色谱法的理论、实验方法、仪器以及重要的应用等做了概括性地**论述,内容广泛,并附有大量参考文献。这对于我们系统而**地了解色谱理论知识,掌握分析研究方法或从事教学工作,是重要的参考资料。