您好,欢迎来到仪表展览网!
请登录
免费注册
分享
微信
新浪微博
人人网
QQ空间
开心网
豆瓣
会员服务
进取版
标准版
尊贵版
|
设为首页
|
收藏
|
导航
|
帮助
|
移动端
|
官方微信扫一扫
微信扫一扫
收获行业前沿信息
产品
资讯
请输入产品名称
噪声分析仪
纺织检测仪器
Toc分析仪
PT-303红外测温仪
转矩测试仪
继电保护试验仪
定氮仪
首页
产品
专题
品牌
资料
展会
成功案例
网上展会
词多 效果好 就选易搜宝!
西安华久钢铁物资有限公司
新增产品
|
公司简介
注册时间:
2011-07-12
联系人:
电话:
Email:
首页
公司简介
产品目录
公司新闻
技术文章
资料下载
成功案例
人才招聘
荣誉证书
联系我们
产品目录
西安不锈钢管
西安不锈钢无缝管
西安不锈钢方矩管
西安卫生级不锈钢管
西安不锈钢焊管
西安不锈钢厚壁管
西安不锈钢装饰管
西安不锈钢盘管
西安不锈钢方管
西安不锈钢圆管
西安不锈钢抛光镜面管
西安不锈钢板
西安310s不锈钢板
西安不锈钢平板
西安不锈钢卷板
西安不锈钢中厚板
西安不锈钢热轧板
西安不锈钢冷轧板
西安不锈钢拉丝板
西安不锈钢镜面板
西安不锈钢花纹板
西安不锈钢防滑板
西安不锈钢棒
西安不锈钢圆钢
西安不锈钢方钢
西安不锈钢光元
西安不锈钢型材
不锈钢角钢槽钢
西安不锈钢角钢
西安不锈钢槽钢
西安不锈钢扁钢
西安不锈钢加工
西安不锈钢板加工
西安不锈钢加工-剪板折弯
西安不锈钢剪板、折弯
西安不锈钢圈圆、卷筒焊接
西安不锈钢切割
西安不锈钢钢格板
西安不锈钢冲孔板网
不锈钢钣金加工、制品
西安不锈钢盖板、水篦子
西安不锈钢水箱
西安不锈钢天沟
西安不锈钢天沟加工
西安不锈钢管件
西安不锈钢法兰
西安不锈钢管件
304不锈钢
西安304不锈钢板
陕西304不锈钢管
陕西不锈钢管件
陕西不锈钢板
西安不锈钢圆钢
陕西不锈钢加工
201不锈钢
西安201不锈钢管
304L不锈钢管
西安304L不锈钢板
316/316L不锈钢
西安316L不锈钢板
西安316L不锈钢管
西安不锈钢丝
西安不锈钢丝
西安不锈钢防滑板
西安不锈钢公司
不锈钢管规格表
不锈钢型号
西安不锈钢板切割
西安不锈钢方管
西安不锈钢角钢
不锈钢材质
奥氏体不锈钢
当前位置:
首页
>>>
技术文章
>
技术文章
残余元素对奥氏体不锈钢热裂纹形成敏感性的影响
残余元素对奥氏体不锈钢热裂纹形成敏感性的影响
连铸工艺同模铸工艺,相比具有收得率高、质量稳定和减少工序的特点。从经济角度及质量要求方面考虑,在进入下一道工序时,连铸坯必须是无缺陷的,如果可能,不需要任何的检查与加工。为了获悉在连铸坯内部或表面裂纹的形成机制以及在出现裂纹情况下材料的高温性能,研究者进行了大量的高温拉伸测试。通常,在刚好低于
1000
℃
进行的高温拉伸测试被称作
“
温拉伸
"
,而在
l0OO
℃
至熔点温度以下进行的高温拉伸测试被称作
“
高温拉伸
”
。高温拉伸测试主要研究材料的强度及韧性
(
延展性
)
,以实现在凝固及连铸过程中对产品质量进行优化。
金属材料的高温性能受多种参数的影响。对性能有显著影响的因素,比如:材料的化学成分、应变速度、温度一时间循环关系一直是人们研究的对象。
1
、
连铸过程中热裂纹的形成
在连铸、焊接及热加工过程中,如果材料不能承受应力和应变所产生的应力,热裂纹就会形成。说到这里,必须区别两种不同类型的热裂纹。**种热裂纹是晶体内裂纹,当有液相薄膜层浸入晶粒边界,在拉伸负荷作用下,没有出现塑性变形,晶粒内部显微组织就发生了撕裂。**种热裂纹则正好相反,不涉及液相。大约在再结晶温度以下,材料的延展性有所降低,因此,这种热裂纹被称作
“
延展性降低裂纹
”
。
**种热裂纹被称作偏析裂纹,因为液相薄膜的形成与凝固过程中合金元素的显微偏析有关。这种类型的裂纹可进一步分为凝固收缩裂纹和熔化裂纹。
凝固过程中,在凝固面前沿的熔融区富含合金元素和残余元素。因此,在凝固过程的末期还会存在少量的残留液相分布在已凝固的显微组织之间,把它们分开。凝固和冷却阶段产生的收缩应变以及膨胀另外增加的收缩应变都会产生表面裂纹和内部裂纹。即使在随后的热成型加工中,内部凝固裂纹也不能消除,如果材料承受更大的张力负荷,合金元素偏析的地方仍会发生断裂。如果这些区域在随后进一步的加工中被切掉,这些部位有可能成为淬火裂纹的起始点或导致材料发生劈裂。
随着凝固过程的进行,在还剩大约
3O
%液相的时候,晶粒之间的相互连接使*初试样可以经受住较小的外力。此时的温度被称作零强度温度
Tnf
。从宏观上来讲,此时的试样很脆,甚至会完全断裂,因为晶粒间残留的液相薄膜不能把应变转移到邻近的枝晶或晶粒。随着试验温度的降低,合金元素的局部偏析区开始凝固,当断裂时首先能测到断面收缩发生在所谓的零塑性温度
Tnf
。随着温度的进一步降低,材料的强度持续增加,断裂瞬间断面收缩开始急剧增加,当达到*大值后多少有些下降,其值完全依赖于钢种。这种所谓的二次降低塑性归因于合金元素和残余元素在奥氏体中的溶解度降低,析出相应的微粒,流体相的形成以及在奥氏体晶粒边界析出亚共析铁素体。这使得材料断裂瞬间其*小断面收缩可以降到很低的值。
零强度温度和零塑性温度之间的温度范围表示了材料固相和液相界面力学性能的特征。这两个温度的差值
(
△
T0=
△
Tnzf=Tnf
一
Tnz)
可用来作为连铸坯内部裂纹和热裂纹形成敏感性的量度。工业研究证实,当此温度范围
△
T0
增加时,可观察到的内部裂纹数量有所增加。
奥氏体不锈钢凝固组织的形态取决于铁素体和奥氏体形成元素的平衡含量。此平衡含量通常用铬当量和镍当量之比来表示,即
Creq
/
Nieq
。在本文中,我们按照
Hammar
和
Svensson
的方法来计算
Creq
/
Nieq
。
具有低
Creq
/
Nieq
比值的奥氏体铬镍钢内部容易出现裂纹。结晶器出口处的铸坯是裂纹形成的关键区,因为这里的冷却速度急剧降低,连铸坯的温度梯度也显著降低。因此,凝固前沿的温度升高,甚至可以达到熔点。此效应导致靠近凝固前沿的柱状晶之间产生熔融偏聚区。如果铸坯到达二次冷却的**区,则又可以恢复较高的温度梯度。
不同钢种不锈钢对热裂纹形成的敏感性显示出极大的差异。对于这些钢种,热裂纹的形成主要同凝固过程中初生析出相的类型和析出相的顺序有密切关系。初生析出相为奥氏体的不锈钢具有较高的热裂纹形成敏感性。除了在凝固过程中产生的较大收缩外,热裂纹易于形成的原因还有:磷和硫元素溶解度的降低,它们在基体中扩散速度降低以及锰在奥氏体晶格中溶解度的增加。
大生产的不锈、耐酸和耐热钢,其热裂纹形成的敏感性在多大程度上可以通过加入合金元素,如钙和镁来降低以及通过加入来自废金属的残余元素铜、锡和铅会增加其敏感性,这样的研究目前几乎没有。因此,应当研究这些元素对奥氏体不锈钢高温性能的影响。
本文主要阐述上述元素的不同含量对所选不锈钢高温延展性和强度的影响以及对其在熔点至
11OO
℃
之间热裂纹形成敏感性的影响。此外,在工业条件下,重新加热对材料在上述温度区间内的高温塑性的影响也进行了研究。
2
、
铜、锡和铅对材料高温性能的影响
选用
AISI 304(1.4301)
和
AISI 317(1.4439)
这两种材料来进行一系列的测试。它们的凝固模式主要分别为铁素体模式和奥氏体模式。只有
AISI 304
才加入铅。
①
铜的加入从根本上降低了特征温度,但对两种材料的作用不同。对于材料
AISI 317
,其临界凝固温度区间从
34K(
含
0.07
%铜
)
增至
48K(
含
2.34
%铜
)
。同时零强度温度和零塑性温度都有所下降。对于材料
AISI 304
,当铜含量从
0.07
%增至
0.81
%时,其熔点温度、凝固点温度、零强度温度和零塑性温度下降了约
8K
,当铜含量增至
2.49
%时,这些温度开始保持不变,但临界凝固温度区间增大。
从加铜合金断裂时的断面收缩率和*大拉力随温度的变化关系可知,随着铜含量的增加,对断面收缩率并没有明显影响。
AISI 317,HAISI 304
,随着温度逐渐降至
l100-C
,它们的塑性不但没有降低反而有所升高。用来进行拉伸测试的试样含铜量是*高的
(AISI 317
含铜
2.34
%,
AISI 304
含铜
2.49
%
)
。随着铜含量的增加,
AISI 304
的断面收缩率没有变化而
AISI 317
的断面收缩率则稍微下降。塑性的降低主要是由于较高的形变速率而不是由于铜含量的增加。
②
锡的加入从根本上降低了材料的特征温度,但对两种钢的作用方式不同。对
AISI 317
,随着锡含量从
O.006
%增加到
O.15
%,其临界凝固温度区间从
34K
增至
67K
,几乎增加了一倍;而当锡含量增至约
O.3
%时,则降至
58K
。锡对
AISI 304
的作用则不同,随着锡含量从
O.009
%增加到
O.22
%,其临界凝固温度区间*初升高而后保持在
l6K
,一直到锡含量增至
O.41
%
(
试样
Sn 3)
。
对于
AISI 304
随着锡含量的增加,当温度小于
l25O
℃
时,零强度温度、零塑性温度以及断面收缩率都有所下降,而对
AISI 317
这种变化不是连续的。当平均锡含量为
O.15
%时达到*低值。对材料的显微组织研究表明,这种情况出现的原因是锡含量的增加降低了钼元素的偏聚。另外,大量硫和锰的偏聚也有重要影响。总而言之,可以说两种材料中锡含量的增加显著降低了其韧性,尤其是在
1300
℃
左右的温度区间内。
AIS
工
304
塑性的降低要大于
AISI 317
。对于这两种材料,当含锡量*高的试样在大生产条件下退火后,两种材料在应变速度为
O.3s-1_
的情况下其韧性有所降低,但在
950
℃
至
125O
℃
的温度区间内几乎保持不变。由于断面收缩率的变化同未经过退火的情况以及低应变速度的变化方向一致,因此可以得出这样的结论,即:材料塑性的变化是由于应变速度的影响。
③
铅
本文研究了铅对
AISI 304(1.4301)
高温性能的影响。由于试样较少,所以只进行了有限的实验工作。铅的*大加入量为
l4×10-6
根据差式热分析法研究发现,当铅含量在
(1O
~
14)×10-6
时,材料的熔点
Tlig
降低了约
8K
,凝固点
Tsol
降低了约
1OK
。当铅含量从
O
增至
1O×10-6
时临界温度区间
△
To(
零强度温度和零塑性温度之间的差值
)
从
5K
增至约
35K
。
较低的变形速度对材料的韧性似乎没有什么影响。相反,退火试样在应变速度为
O.3S-1
条件下进行试验,其韧性在
11O0
℃
至
12OO
℃
的温度范围内明显降低。
3
、
钙和镁对材料高温性能的影响
加入钙和镁对不锈钢高温强度和塑性的影响是通过对
AISI 304LN(1.4311)
和
AISI 316L(1.4435)
的研究得出的。这两种钢的初生析出相分别为铁素体和奥氏体。
对
AISI 304LN
,加入不同含量的钙和镁在整个温度区间内材料的韧性都有所增加。钙和镁的添加对
AISI 316L
的作用也相同。同不加钙和镁的试样相比,加入
(15
~
17)×10-6
的镁可使
AISI 316L
的零塑性温度降低
1OK
。但是其塑性仍显著低于
AISI 304LN
。
4
、讨论
对于初生析出相为铁素体的
AISI 304
,铜的加入只稍微增加了临界凝固温度范围
(
约
lOK)
,同时降低了凝固点和零韧性温度,而对初生析出相为奥氏体的
AISI 3l7
,铜的加入则使上述温度显著提高。相反,加入
O.7
%~
2.5
%的铜几乎不影响二者的高温强度和塑性。对于大生产来讲,这意味着当含铜量为
0.7
%~
2.5
%时,
AISI 304
的浇铸温度应当降低
1O
~
20K
,对
AISI 317
进行连铸时必须采取措施降低作用于连铸坯外壳的机械压力。
AISI 304
*多含
O.4
%的锡时,其临界凝固温度范围仅仅增加了约
lOK
。相反,
AISI 317
中只要加入
O.3
%的锡,其临界凝固温度范围就会显著增加。随着锡含量的增加,这两种材料的韧性明显降低,尤其是在
13OO
℃
左右的温度范围内。由于同
AISI 3l7
相比,
AISI 304
的韧性降低得更多,所以应当注意这种材料在热成型加工中的参数。
当
AISI 304
中含
(1O
~
l4)×10-6
的铅时,在
11OO
℃
至
12OO
℃
的温度范围内,随着变形速度的增加,其韧性*差。因此在大生产中,铅的含量应控制在
lO×10-6
以下。
在
AISI 304LN
和
AISI 316L
中加入钙和镁只稍微降低它们的熔点和零塑性温度。钙和镁的加入使二者从
l3OO
~
135O
℃
的温度直到
11OO
℃
,延展性都显著增加。从这点可以得出结论:钙和镁的加入有利于对二者进行热加工。
5
小结
铜、锡、铅、钙和镁这些元素对奥氏体不锈钢高温凝固显微组织的强度和韧性具有不同的作用。此外,凝固方式
(
初生析出相为铁素体或奥氏体
)
也是一个重要的影响因素。
铜、锡和铅的加入部分增加了材料的临界温度范围宽度,它们影响热裂纹形成的敏感性。此外,这三种元素还降低了材料凝固显微组织在拉伸应力作用下的塑性。在大生产连铸过程中材料出现内部裂纹以及在热加工过程中出现微裂纹的危险可以分别通过调整连铸参数和降低变形速度的方法来降低,尤其对于初生析出相为奥氏体的钢来讲更是如此。
残余元素对奥氏体不锈钢热裂纹形成敏感性的影响,详情参考 http://www.xabuxiugang.com/
上一篇:
陕西不锈钢腐蚀的涵义和分类?
下一篇:
202产品介绍
若网站内容侵犯到您的权益,请通过网站上的联系方式及时联系我们修改或删除
陕公网安备 61010402000317号