如何区分固态继电器SCR和SSR?
本公司生产的试验设备经常用到电加热系统,为了人性化的控制电解热,我们再设计中经常使用周波调节器和固态继电器等。
其原理无非是通过接受温控仪表输出的4-20ma信号,然后通过改变其内部可控硅导通角的触发角度,来调节实际输出,以达到人性化加热控制的目的。通常固态继电器有两种,分别是SCR和SSR,那么二者区别在哪儿?用于小功率的加热采用SSR还可以,频繁通过也无所谓。但是在进行大功率电加热控制的时候,我们一般使用SCR,无论是调压型还是调功型的对电网的影响都相对小一些。
SSR成本可接受,通过通断来控制,要是温感准确的话,可以有相同效果。
1.调压应用 P型SSR调压,可采用外配移相电路来实现。例如,TW-702控温仪的触发系统,国产SDKC-05单电源调相集成电路(见图2)。在计算机上,通常采用PIO经驱动级的位控方式,利用50Hz电网电源的过零中断,经CTC计时,控制导通角,以达到调压之目的。
2.交流调功应用 “交流调功”是一种Z型SSR普遍采用的方法,也能实现PID调节。即在固定周期内,控制交流正弦电流半波个数,达到调功目的。模拟电路常采用电压比较器,将一个固定周期的锯齿电压和来自前级误差电压作比较,输出方波实现调节,如图3所示。在计算机上采用计时算法,产生占空比可调的方波脉冲击来实现。例如日本的SHIMADEW和OMRON公司的SR22、FD20、E5系列智能化控温产品,配合Z型SSR,实现自适应“自动翻转”控制,即通过计算机产生扰动,算出*佳PID控制参数。
3.三相电流控制 HS系列SSR产品,可直接用于三相电机的控制。*简单的方法,是采用2只SSR作电机通断控制,4只SSR作电机换相控制,第三相不控制。 作为电机换向时应注意,由于电机的运动惯性,必须在电机停稳后才能换向,以避免产生类似电机堵转情况,引起的较大冲击电压和电流。在控制电路设计上,要注意任何时刻都不应产生换相SSR同时导通的可能性。上下电时序,应采用先加后断控制电路电源,后加先断电机电源的时序。换向SSR之间,不能简单地采用反相器连接方式,以避免在导通的SSR未关断,另一相SSR导通引起的相间短路事故。此外,电机控制中的保险、缺相和温度继电器,也是保证系统正常工作的保护装置。\\\
SSR是用半导体器件代替传统电接点作为切换装置的具有继电器特性的无触点开关器件,单相SSR为四端有源器件,其中两个输入控制端,两个输出端,输入输出间为光隔离,输入端加上直流或脉冲信号到一定电流值后,输出端就能从断态转变成通态。 固态继电器
交流固态继电器按开关方式分有电压过零导通型(简称过零型)和随机导通型(简称随机型); 按输出开关元件分有双向可控硅输出型(普通型)和单向可控硅反并联型(增强型); 按安装方式分有印刷线路板上用的针插式(自然冷却,不必带散热器)和固定在金属底板上的装置式(靠散热器冷却); SSR固态继电器以触发形式,可分为零压型(Z)和调相型(P)两种。 在输入端施加合适的控制信号IN时,P型SSR立即导通。当IN撤销后,负载电流低于双向可控硅维持电流时(交流换向),SSR关断。 Z型SSR内部包括过零检测电路,在施加输入信号IN时,只有当负载电源电压达到过零区时,SSR才能导通,并有可能造成电源半个周期的*大延时。Z型SSR关断条件同P型,但由于负载工作电流近似正弦波,高次谐波干扰小,所以应用广泛。 北京灵通电子公司的SSR由于采用输出器件不同,有普通型(S,采用双向可控硅元件)和增强型(HS,采用单向可控硅元件)之分。当加有感性负载时,在输入信号截止t1之前,双向可控硅导通,电流滞后电源电压90O(纯感时)。t1时刻,输入控制信号撤销,双向可控硅在小于维持电流时关断(t2),可控硅将承受电压上升率dv/dt很高的反向电压。这个电压将通过双向可控硅内部的结电容,正反馈到栅极。如果超过双向可控硅换向dv/dt指标(典型值10V/ s,将引起换向恢复时间长甚至失败。 单向可控硅(增强型SSR)由于处在单极性工作状态,此时只受静态电压上升率所限制(典型值200V/ s),因此 增强型固态继电器HS系列比普通型SSR的换向dv/dt指标提高了5-20倍。由于采用两只大功率单向可控硅反并联,改变了电流分配和导热条件,提高了SSR输出功率。 增强型SSR在大功率应用场合,无论是感性负载还是阻性负载,耐电压、耐电流冲击及产品的可靠性,均超过普通固态继电器,并达到了进口产品的基本指标,是替代普通固态继电器的更新产品。
电阻负载他不存在启动电流,冲击比较小,对电网影响不大,当然使用SCR通过调压来调功,对电网影响更小,但是二者比较的话使用SCR的造价更高一点。目前国外加热使用SSR固态继电器控制加热的比较多一点。