首当其中的就是电极循环性能差。硫电极放电的时候不是直接生成硫化锂,而是逐步被还原,伴随多硫化锂中间产物的生成;多硫化锂会溶解在电解液中,发生溶解流失。溶解的多硫化锂一方面会扩散到负极还原、再在正极氧化,产生穿梭效应,导致低库伦效率和高自放电;另一方面,溶解的多硫化锂在充电过程中还会在正极表面优先沉积,导致电极因表面孔堵塞而失活,因此,电极循环性能很差。
目前,科研界的方法,是用多孔碳材料去阻挡、去吸附多硫离子,减少它的溶解流失。这种策略在学术上看似很有效,但实际作用非常有限。两者的主要区别在于实验室的研究工作都是基于很小的扣式电池,电极很薄、硫负载量不高,总的硫量大约在几个毫克级;而实际电池的硫含量较大(克级),且电极很厚、单位硫载量很高。
比如在艾新平教授参与的锂硫电池863项目中,实验室能够循环上1000次的硫/碳复合材料,在实际电池中仅能循环几次,有时候甚至一次电都放不出来,正是这个原因。