请登录 免费注册
分享
  • 微信
  • 新浪微博
  • 人人网
  • QQ空间
  • 开心网
  • 豆瓣
会员服务
进取版 标准版 尊贵版
| 设为首页 | 收藏 | 导航 | 帮助 |
移动端 |
官方微信扫一扫
微信扫一扫
收获行业前沿信息
产品 资讯
请输入产品名称
噪声分析仪 纺织检测仪器 Toc分析仪 PT-303红外测温仪 转矩测试仪 继电保护试验仪 定氮仪
首页 产品 专题 品牌 资料 展会 成功案例 网上展会
词多 效果好 就选易搜宝!
上海卷柔新技术有限责任公司
新增产品 | 公司简介
注册时间:2019-08-21
联系人:
电话:
Email:
首页 公司简介 产品目录 公司新闻 技术文章 资料下载 成功案例 人才招聘 荣誉证书 联系我们

产品目录

多功能新材料增透涂层
温室压花玻璃增透镀膜液
PC材质异形球罩增透镀膜液
玻璃增透核壳粒子涂层镀膜液
PET高透膜水性涂层
solgel溶胶凝胶涂层
低介电5G毫米波二氧化硅涂层
增透减反膜 ARcoating
AR镀膜增透膜增透镀膜
塑料膜增透膜
大尺寸超透减反射玻璃【提拉法湿法镀膜】
半透半反镜面非导电玻璃
电子触摸屏玻璃
扫描打印机
摄像头面板玻璃
显示器保护玻璃
建筑内装饰
灯具面板玻璃
文博展示
AR增透玻璃
色镜滤
光学玻璃
光学镀膜
光学透镜
光学反射镜
减光镜
反射镜
分光镜
UV镜
二向色镜
偏振镜
光纤镀膜
窗口片
相机用滤镜
红外激光镜片
光学棱镜
二向色镜/合光镜
透红外亚克力
光学透镜产品
高反镜高反膜
金属镀膜供应
UV镜片
首页 >>> 技术文章 >

技术文章

耐高温导热系数0.6w/m.k聚酰亚胺PI薄膜

耐高温导热系数0.6w/m.k聚酰亚胺PI薄膜


需要增透减反技术可以联系我们上海工厂

上海卷柔新技术光电有限公司是一家专业研发生产光学仪器及其零配件的高科技企业,公司2005年成立在上海闵行零号湾创业园区,专业的光电镀膜公司,技术背景依托中国科学院,卷柔产品主要涉及光学仪器及其零配件的研发和加工;光学透镜、反射镜、棱镜,平板显示,安防监控等光学镀膜产品的开发和生产,为全球客户提供上等的产品和服务。

关键词:耐高温,绝缘高导热,TIM材料,PI聚酰亚胺,复合材料

摘要:在电子器件高度薄型化、多功能化和集成化的时代,会不可避免地导致复合材料内部的热量积累,严重影响设备的稳定运行和使用寿命,如何实现电介质材料快速且高效的导热散热已成为影响电子设备发展的关键问题。传统聚酰亚胺本征导热系数较低,限制了在电气设备、智能电网等领域中的应用,发展新型高导热聚酰亚胺电介质薄膜材料成为国内外研究重点。本文介绍了复合材料的热传导机制,概述了近年来导热聚酰亚胺薄膜的研究进展与发展现状,重点讨论了导热填料、界面相容、成型工艺对材料导热系数的影响,*后结合导热聚酰亚胺复合电介质材料未来发展的需要,对研究中存在的一些关键科学技术问题进行了总结与展望。

图片

图片

图片

01 引言

高分子材料以其优异的电绝缘性、耐化学腐蚀性、质轻、密度小等特性被广泛应用于电子电气、通信、**装备制造、航空航天等领域。聚酰亚胺(PI)是由含酰亚胺基链节[-C(O)-N(R)-C(O)-]构建的芳杂环高分子化合物,具有优异的电绝缘性、耐辐照性能、机械性能等特性,被誉为“解决问题的能手”。PI 作为结构或功能材料具有巨大的发展前景,特别是 PI 薄膜材料,有着“黄金薄膜”的美称,*早被开发和应用的一种聚酰亚胺产品,在印制电路板、电子封装、层间介质、显示面板等领域中被广泛应用(见图 1)。
图片
图 1 聚酰亚胺薄膜材料的应用
现代电子设备、以芯片为代表的工业器件、混合动力电动汽车以及发光二极管的高度集成和高功率导致产品的尺寸逐渐减小,由此产生的热量成倍增加的问题越来越突出,严重影响产品的操作性能及使用寿命,热管理系统的高效导热散热越来越受到人们的广泛关注。

图片

相关研究表明:电子设备的温度每升 2℃,可靠性降低 10%;温度升高 8~12℃,使用寿命减半,材料的导热性能已成为影响设备正常工作的一个重要参数。聚合物材料在解决导热散热问题方面显示出了良好的潜力,但聚酰亚胺材料的本征导热系数较低,通常在 0.2 W/(m·K)以下,远低于金属、碳、陶瓷等材料,极大限制了 PI 薄膜在高新技术领域的应用。为了保证设备的正常运行和使用**性,寻求适当方法来提高聚酰亚胺材料的热导率具有重要意义。为了解决聚酰亚胺材料的导热散热问题,研究人员主要从两个方面开展工作。一是对 PI 基体本体改性,从分子结构设计角度出发,基于 PI 的 1~3 级结构设计及构筑有序结构;通过力学拉伸、剪切、离心、纺丝等方式诱导有序结构的形成;基于分子间相互作用力,特别是发挥氢键的优势,在分子链间形成穿插和缠结���结构以及构建侧基之间的氢键作用。提高聚酰亚胺本征热导率的策略即改变基体链结构的形态,使蜷曲的分子链呈现舒展的状态,提高链段聚集的有序性,来创造声子传递的途径,以此提高基体的本征导热系数。
二是以 PI 为基体,在基体中添加高导热填料也是改善热导率的有效策略,目前,国内外高导热聚酰亚胺复合材料的理论研究和工业化生产主要集中在填充型 PI 复合材料。导热填料在 PI基体中相互连接,形成有序的导热路径,减少声子传递过程中产生的散射,实现热量的快速传输。
复合材料的热导率由 PI 基体的结构和填料的性能、填料在基体中的排列以及基体与填料的相互作用等因素共同决定,同时还要考虑导热通路的构筑及制备工艺等材料导热性能的影响。

02 热传导机制 

热是材料内部的分子、原子、电子等微观粒子的移动、转动和振动的能量,材料的导热机理与其内部的微观粒子的相互碰撞和传递有着密切的联系。热传导的载体有分子、电子、声子(晶格振动的能量量子)、光子。热量由材料的高温部分向低温部分传递,而在本质上可认为是振幅较大的分子和原子带动振幅较小的分子和原子振动,传导过程如图 2 所示。

图片
图 2 粒子碰撞在材料中的热传导
不同材料的热传导机制是不同的,主要取决于导热载体在材料中所起的作用。在金属内部存在大量自由移动的电子,这些电子通过相互作用或碰撞进行热量的传递。金属也是晶体,热传导过程还通过晶格的振动来完成,即还存在声子传导,但自由电子的传热效率远高于声子传热,因此,金属的热传导载体以电子为主。
在非导体晶体中,分子或原子有序分布在晶格上,热传导方式以声子导热为主,其热导率主要取决于材料的结晶程度和取向度,从机理上认为取决于声子的散射程度。造成声子散射的主要原因有:分子链的高度缠结、分子结构中的空隙、界面和结构缺陷以及分子链间弱的相互作用。
声子的静态散射是由各种缺陷引起的,动态散射由分子链的非简谐振动造成,分子链的旋转以及链间相互缠结会加剧非简谐振动,同时链段内旋转产生的多种形态的构象也会引起声子散射。
大多数聚合物为饱和体系,在其内部不存在自由运动的电子以及电子之间激烈的相互碰撞,热量主要通过声子进行传递。分子链在受热时产生振动,热传导主要依赖分子或原子在固定位置上的周围的热振动,将热量依次传递到相邻的分子或原子,聚合物的热传导如图 3 所示。
图片
图 3 聚合物的导热机理
聚合物具有分子链复杂且极易缠结、分子量多分散性以及分子量大等特点,结晶度不是很高,声子在内部传递运动十分困难。此外,晶体结构中的缺陷、界面、空隙以及非晶中的无序部分都将引起声子散射,这些因素对复合材料的热导率产生很大的影响。因此,聚合物的热导率普遍较低,常见聚合物的热导率如表 1 所示。
表 1 常见聚合物的热导率
图片
图片
聚酰亚胺主要通过二酐和二胺的反应来制备,常见的合成方法有一步法、二步法、三步法和气相沉积法等,被实验室和工业生产中广泛使用的是二步法,其中*常用的二酐和二胺分别是均苯四甲酸酐(PMDA)和(ODA),以此为例,合成均苯型 PI 的路线如图 4 所示,其中 DMAC 是 N,N-二甲基乙酰胺,作为溶剂使用;Thermal imidization 表示热亚胺化。
图片
图 4 两步法合成 PI 的路线
与环氧树脂、聚偏氯乙烯、聚二甲基硅氧烷等聚合物一样,聚酰亚胺具有长链的分子组成和随机排列分子结构,分子主链中含有大量的芳环和含氮五元环,同时还含有一定数量的醚键,从刚柔性角度来看,聚酰亚胺分子呈现较大的刚性,刚性结构和芳杂环的共轭效应赋予 PI 优异的耐热性和稳定性,同时可以抑制链节的内旋转,在一定程度上减少声子散射。还有研究指出,聚合物链的热导率与单体的类型密切相关,具有芳香环的聚合物的热导率甚至是聚乙烯的 5 倍,但由于聚合物链的结合强度低和质量分布不均而大大降低了材料的热导率。
另外,由于聚合反应很难有效控制反应的进行、调控晶区与非晶区的组成以及阻止副产物的产生,聚酰亚胺分子链的缠结、分子量分布不均、非晶结构中的缺陷、空隙、杂质等都使得声子在传导过程中能量、动量及运动方向发生变化,进而降低声子的平均自由程。
此外,选用不同二酐和二胺制备的 PI 分子的对称性不同,侧基基团的结构和排布方式以及引入的不对称链节等因素均会减弱分子结构的定向排列,降低空间的有序堆积程度,对聚酰亚胺导热性能的提升产生严重的影响。目前解释聚合物复合材料热传导机制的理论主要有:导热通路理论、导热逾渗理论和热弹性系数理论。其中导热通路理论*常用于解释填充型聚合物的导热机制,此理论认为导热路径的形成是由于导热填料与聚合物基体内部的接触,热流通过声子沿着热阻较低的路径或网络传递。
当体系的填料含量较低时,填料之间彼此分离,粒子之间的间距较大,相互作用较弱,无法形成相互接触的连续的导热通路,填料被基体包覆,形成类似“海-岛”的结构,热量在聚合物基体中沿着基体-填料-基体的路径传输,声子在填料未连接处发生散射,不利于提高材料的热导率。
随着填料含量的增加,填料间相互接触,在局部形成导热链,热量沿着导热粒子组成的导热通路传播。随着填料的进一步增加,局部的导热链相互搭接形成完整的导热网络,热量通过声子沿着该网络传递,如图 5 所示。
图片
图 5 导热网络形成示意图

03 复合材料导热系数模拟 



关于我们

上海卷柔新技术光电有限公司是一家专业研发生产光学仪器及其零配件的高科技企业,公司2005年成立在上海闵行零号湾创业园区,专业的光电镀膜公司,技术背景依托中国科学院,卷柔产品主要涉及光学仪器及其零配件的研发和加工;光学透镜、反射镜、棱镜,平板显示,安防监控等光学镀膜产品的开发和生产,为全球客户提供上等的产品和服务。

    采用德国薄膜制备工艺,形成了一套具有严格工艺标准的闭环式流程技术制备体系,能够制备各种超高性能光学薄膜,包括红外薄膜、增透膜,ARcoating,激光薄膜、特种薄膜、紫外薄膜、x射线薄膜,应用领域涉及激光切割、激光焊接、激光美容、医用激光器、光学科研,红外制导、面部识别、VR/AR应用,博物馆,低反射橱窗玻璃,画框,工业灯具照明,广告机,点餐机,电子白板,安防监控等。
    卷柔新技术拥有自主知识产权的全自动生产线【sol-gel溶胶凝胶法镀膜线】,这条生产线能够生产全球先进的减反射玻璃。镀膜版面可达到2440*3660mm,玻璃厚度从0.3mm到12mm都可以,另外针对PC,PMMA方面的增透膜也具有量产生产能力。ARcoating减反膜基本接近无色,色彩还原性好,并且可以避免了磁控溅射的缺点,镀完增透膜后玻璃可以做热弯处理和钢化处理以及DIP打印处理。这个难度和具有很好的应用性,新意突出,实用性突出,湿法镀膜在价格方面也均优于真空磁控的干法。


  卷柔减反射(AR)玻璃的特点:高透,膜层无色,膜硬度高,抗老化性强(耐候性强于玻璃),玻璃长期使用存放不发霉,且有一定的自洁效果.AR增透减反膜玻璃产品广泛应用于**文博展示、低反射幕墙、广告机玻璃、节能灯具盖板玻璃、液晶显示器保护玻璃等多行业。
    我们的愿景:卷柔让光学更具价值!
    我们的使命:有光的地方就有卷柔新技术!
    我们的目标:以高质量的产品,优惠的价格,贴心的服务,为客户提供优良的解决方案。
    上海卷柔科技以现代镀膜技术为核心驱动力,通过镀膜设备、镀膜加工、光学镀膜产品服务于客户,努力为客户创造新的利润空间和竞争优势,为中国的民族制造业的发展贡献力量。


上一篇:制备耐高温无色透明的PI薄膜的5种方法
下一篇:高分子材料丨有哪些热门的特种功能膜材料值得关注?
              
若网站内容侵犯到您的权益,请通过网站上的联系方式及时联系我们修改或删除