智能仪表在中央空调中的应用
随着现代技术的发展,智能仪表在工业中的应用也越来越广泛,技术也越来越成熟,并且能够节约很多的能源!本次项目主要用智能仪表来监控温度,实施空调的开和关,而且本方案的成本很低!本次项目要求实现的基本功能如下:1.同时监测室内外两个温度点,并实时显示两个温度;2.采用高性能微处理器,能实现温差运算,并能实时输出温差的控制信号,采用继电器输出形式。3.两个继电器输出,一个控制风机,一个控制空调。4.温度的控制宽度(即死区)可以设置;5.仪表精度为:0.5%;6.供电电源:220VAC;外形尺寸:150×200×60(高×宽×深),采用壁挂式。图1为本方案的实物接线图:图2为仪表的信号输入,继电器的输出端及220V电源线:图3为方案的总貌图结论:如图2所示,当热电阻输入信号达到一定的温度后,智能仪表通过报警输出来控制继电器,使常开触点闭合,常闭触点断开,从而达到控制空调的开和关!
现代仪器仪表按其应用领域和自身技术特性大致划分为几类?有哪几
根据国际发展潮流和我国的现状,现代仪器仪表按其应用领域和自身技术特性大致划分为6个大类,即工业自动化仪表与控制系统、科学仪器、电子与电工测量、仪器、医疗仪器、各类专用仪器,传感器与仪器仪表元器件及材料。工业自动化仪表与控制系统,主要指工业,特别是流程产业生产过程中应用的各类检测仪表、执行机构与自动控制系统装置。科学仪器主要指应用于科学研究、教学实验、计量测试、环境监测(风速计、温度表、照度计)、质量和**检查等各个方面的仪器仪表。电子与电工测量仪器,主要指低频、高频、超高频、微波等各个频段测试计量专用和通用仪器仪表。医疗仪器主要指用于生命科学研究和临床诊断**的仪器。各类专用仪器指农业、气象、水文、地质、海洋、核工业、航空、航天等各个领域应用的专用仪器。科学仪器可以细分为14个小类,即电子光学仪器,离子光学仪器,X射线仪器,光谱仪器,色谱仪器,波谱仪器,电化学仪器,生化分离分析仪器,气体分析仪器,显微镜和成像系统,化学反应及热分析仪器,声学振动仪器,力学性能测试仪器(材料试验机),光电测量仪器。其中,发展*快,应用*广和市场容量*大的是各类光学仪器和分析仪器。现代仪器仪表虽然作了大致分
影响仪器仪表差热分析的主要因素
(1)气氛和压力的选择气氛和压力可以影响样品化学反应和物理变化的平衡温度、峰形。因此,必须根据样品的性质选择适当的气氛和压力,有的样品易氧化,可以通入n2、ne等惰性气体。(2)升温速率的影响和选择升温速率不仅影响峰温的位置,而且影响峰面积的大小,一般来说,在较快的升温速率下峰面积变大,峰变尖锐。但是快的升温速率使试样分解偏离平衡条件的程度也大,因而易使基线漂移。更主要的可能导致相邻两个峰重叠,分辨力下降。较慢的升温速率,基线漂移小,使体系接**衡条件,得到宽而浅的峰,也能使相邻两峰更好地分离,因而分辨力高。但测定时间长,需要仪器的灵敏度高。一般情况下选择8度•min-1~12度•min-1为宜。(3)试样的预处理及用量试样用量大,易使相邻两峰重叠,降低了分辨力。一般尽可能减少用量,*多大至毫克。样品的颗粒度在100目~200目左右,颗粒小可以改善导热条件,但太细可能会破坏样品的结晶度。对易分解产生气体的样品,颗粒应大一些。参比物的颗粒、装填情况及紧密程度应与试样一致,以减少基线的漂移。(4)参比物的选择要获得平稳的基线,参比物的选择很重要。要求参比物在加热或冷却过
产品检测装置中的仪表应用
1.阀门开度控制与电动蝶阀的定位器连接对阀门进行控制,可实现阀位的任意角度调节。如图1所示。图1:用作阀门开度控制在阀门投入使用前,用标准信号校验仪对阀门定位器的4~20mA电流信号进行统调,按照表1设置参数,可达到使用要求。实验数据见表2。表1:AI-808仪表用于“阀门开度控制”的参数设置表2:阀门开度实验数据表2.温度控制与铂电阻温度变送器、固态继电器(SSR)组成加热炉的温度控制。如图2所示。图2:用于控温用铂电阻温度变送器作输入,输出信号给固态继电器,驱动加热电炉。加热电炉保温差、散热较快,当环境温度变化较大时,影响控制精度;因为电炉功率有限,滞后时间较长,使整定时间长、效果差。根据环境温度,适当调整参数OPL、OPH值。进行手动自整定,自整定结束后,适当减小M5,增大t,这样可以得到较为满意的效果。参数设置见表3,实验数据见表4。表3:AI-808仪表用于“控温”的参数设置表4:温度实验数据表3.湿度控制与温湿度传感器、电热式加湿器作相对湿度的控制。如图3所示。图3:用于加湿控制温湿度传感器能输出温度、相对湿度两个信号,正常使
智能仪表在生产计量中的应用
生产聚酯切片和涤纶纤维,在生产装置中采用了DCS。因为扩容改造生产能力大大提高,为保证生产过程稳定,对控制系统进行了技术改造,对生产关键测控点和能源计量统计仪表也进行了更新换代。采用智能仪表与DCS相结合,进行生产控制、管理、计量统计和各种数据报表打印等。下面主要以流量仪表为主,讨论智能仪表在能源计量统计,生产过程测量控制中与DCS相结合的例子。1智能仪表在能源计量统计的应用该厂关口表是对进厂中低压蒸汽、氮气、压缩空气等能源介质的瞬时量和累积总流量进行统计的仪表,是厂能源核算的重要依据。关口表原来采用1151差压变送器进行流量测量,因压力波动大,湿度大,环境温度变化大等因素,投动率较低,不能保证长期稳定地提供准确数据,造成计划核算经常超标的问题。针对这种现象,提出采用智能1151与DCS结合的改造方案。1.1智能变送器工作作原理及特点1)1151Alphaline智能变送器使用与普通型一样的δ室传感器,和代码S的智能电路板。转换电路线路板采用专用集成电路和表面封装技术,接收传感器的数字信号并进行修正和线性化处理。组态数据存储在变送器线路板上的非易失性EEE-ROM存储器中,
温度检测仪表与原理
一、温度测量的基本概念温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。华氏温标(oF)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等分,每第分为报氏1度,符号为oF。摄氏温度(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等分,每第分为报氏1度,符号为℃。热力学温标又称开尔文温标,或称**温标,它规定分子运动停止时的温度为**零度,记符号为K。国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(Rev-75)。但由于IPTS-68温示存在一定的不足,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过了1990年国际温标ITS-90,ITS-90温标替代IPTS-68。我
仪表在过程控制中的应用
1电动执行机构运行中振荡原因分析及处理过程控制系统投入自动状态经常会遇到民动执行机构出现这种振荡现象,振荡的频率也较高。由于这种振荡现象的存在,极易引起磁放大器的故障,此外,由于电动执行机构经常处于振荡状态下运行,严重影响机构的使用寿命。因此,在调节系统中应消除这种振荡,以保证调节系统的正常运行。引起执行机构阀位振荡的原因较多,现结合设计、安装调试及运行的经验,说明引起执行机构振荡的原因及消除的方法。(1)电动、执行器阀位反馈小回路振荡,产生振荡的原因主要有以下两个方面。a)由于磁放大器的不灵敏区△g太小,磁放大器过于灵敏,使执行器小回路无法稳定而生产振荡。b)当执行机构失去制动作用而产生惰走现象时,也会引起执行机构小回路振荡。针对上述引起执行机构振荡的原因,对磁放大器不灵敏△g太小引起振荡,根据运行中的经验,把磁放大器的不灵敏区△g调在±120-140μA时可以消除小回路振荡。对于执行机构失去制动应查出机构失去制动的原因给以排除。(2)由于信号源波动而造成执行机构的振荡。可以在系统设计地,在回路中加入阻尼器环节,也可在管路中加机械滤波缓冲的装置。用机械阻尼的方法减
判断仪表故障的简单方法
1.仪表无任何显示,主要原因是电池供电不正常或接触不好。2.兆欧表高压指示灯亮但测试不出阻值。检查是否有高压输���,测试线是否断开,被测试品是否接触良好。3.地阻表测试显示"1"或"1和OPEN"时,量程选择不当或被测接地极开路、电流辅助极过大。4.FC-2G判别是否正常。将仪表后板"显示选择"打至"电流"位,将面板测试孔用导线短接,"0.75U"打在"自动"位,开启高压,显示屏是否显示1000μA±2,如果没有则FC-2G有故障。
仪表、传感器使用注意事项和常见故障
在工程机械车辆中,仪表、传感器的作用是显而易见的,它对整机及部件的工作状态进行有效的监控。如其不能正常工作,则无法反馈给操作者信息,也就不能及时发现故障隐患。一、仪表的使用安装注意事项。1.仪表必须与其配套传感器一起使用。2.导线应连接可靠,不得于其他金属导体相接触。3.安装与拆卸时,不要敲打和磕碰。电流表和电压表还应注意1.电流表正、负极性不可接反,一般情况,工程机械都是整车为负极接地,那么电流表“”接线柱应接蓄电池正极,“+”接线柱应接交流发电机电枢一端(B+)。2.电流表接线前应将垫圈、螺母、螺栓等接触面用砂纸打磨干净,安装螺母时,*好涂一点干净机油,既可防锈蚀又便于拆装;平面绝缘垫圈应完好,且绝缘垫圈于弹簧垫圈之间应装一只平垫片并接牢,以免因接触**而使线头发热,甚至烧坏仪表和线束。3.电流表与电压表接线时,应注意将整车电源关闭,以免造成短路。4.电压表上的“+”极接蓄电池正极,“”极接蓄电池负极,不可错接。二、传感器的使用安装注意事项。油量传感器1.油箱内浮子的移动应灵活,否则
如何选择光纤测试仪表
常用光纤测试表有:光功率计、稳定光源、光万用表、光时域反射仪(OTDR)和光故障定位仪。光功率计用于测量**光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是*基本的。非常像电子学中的万用表,在光纤测量中,光功率计是重负荷常用表,光纤技术人员应该人手一个。通过测量发射端机或光网络的**功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。稳定光源:对光系统发射已知功率和波长的光。稳定光源与光功率计结合在一起,可以测量光纤系统的光损耗。对现成的光纤系统,通常也可把系统的发射端机当作稳定光源。如果端机无法工作或没有端机,则需要单独的稳定光源。稳定光源的波长应与系统端机的波长尽可能一致。在系统安装完毕后,经常需要测量端到端损耗,以便确定连接损耗是否满足设计要求,如:测量连接器、接续点的损耗以及光纤本体损耗。光万用表用来测量光纤链路的光功率损耗。有以下两种光万用表:1、由独立的光功率计和稳定光源组成。2、光功率计和稳定光源结合为一体的集成测试系统。在短距离局域网(LAN)中,端点距离在步行或谈话之内,
现场仪表系统常见故障的分析
目前,随着石化、钢铁、造纸、食品、医药企业自动化水平的不断提高,对现场仪表维护人员的技术水平提出了更高要求。为缩短处理仪表故障时间,保证**生产提高经济效益,本文发表一点仪表现场维护经验,供仪表维护人员参考。一、现场仪表系统故障的基本分析步骤现场仪表测量参数一般分为温度、压力、流量、液位四大参数。现根据测量参数的不同,来分析不同的现场仪表故障所在。1.首先,在分析现场仪表故障前,要比较透彻地了解相关仪表系统的生产过程、生产工艺情况及条件,了解仪表系统的设计方案、设计意图,仪表系统的结构、特点、性能及参数要求等。2.在分析检查现场仪表系统故障之前,要向现场操作工人了解生产的负荷及原料的参数变化情况,查看故障仪表的记录曲线,进行综合分析,以确定仪表故障原因所在。3.如果仪表记录曲线为一条死线(一点变化也没有的线称死线),或记录曲线原来为波动,现在突然变成一条直线;故障很可能在仪表系统。因为目前记录仪表大多是DCS计算机系统,灵敏度非常高,参数的变化能非常灵敏的反应出来。此时可人为地改变一下工艺参数,看曲线变化情况。如不变化,基本断定是仪表系统出了问题;如有正常变化,基本断定仪表系统没有大的
仪器仪表发展历程及与现代社会的关系
人们在研究科学史的时候,把十七世纪看作近代自然科学诞生的分水岭。因为在此以前,自然科学没有建立自己的传统,它依附在哲学的传统和工匠的传统之上。弗兰西斯。培根提出了一个重要的哲学概念——实验是自然科学的基础。伽利略把这一哲学概念变成了可以实践的科学方法,并且提出了科学实验的两个基本要素:用科学仪器进行测量和用数字记录(表达)测量的结果,使实验的结果成为可以定量比较和**计算的数据。从此,自然科学结束了长达数千年的徘徊,由粗陋的观察、模糊的推断走向严肃的实验和严密的逻辑,与数学结成坚固的联盟,建立了自然科学自己的传统。当人类活动的领域越过感觉器官极限的时候,仪器仪表就成了一切事业取得成功的前提。许多学科的进展首先取决于仪器仪表的进展。在十七、十八世纪,由于发明了科学的温度计和实用的温标,才使温度的概念具有更加准确的科学涵义,成为可以测量和定量计算的基本物理量。它直接导致热力学的诞生,使人们发现了能量守恒定律和热机的一系列基本规律,为欧洲的产业**奠定了坚实的科学基础。在十九世纪,由于发明了测量电流的仪表,才使电学与磁学的研究迅速走上正轨,获得了一个又一个重大的发现,
仪器与仪表在线分析技术
回想在1963年时,由于工作关系使我有较多机会学习并接触到许多有关成分分析仪器的发展和可能应用课题。那时我曾提出"分析技术仪表化与分析仪器自动化乃是解决科学技术与生产现代化的重要手段",并且,还提出"仅仅掌握了热工参数并不可能探知随着生产过程而出现的原料成分变化、触媒性能衰减和杂质积聚等现象。"我当时的这些话,既有推理成分,也有鼓气因素,不过今天看来似乎也还有些道理。40年过去了,我们今天的流程控制技术总体规模越来越大,效率和效益指标越来越高,并且随着市场的激烈竞争,从原材料到品牌都要求能具有一定的柔性生产适应性,节约能源和保护环境也引起社会极大的关注。所以,应运而生的先进控制技术(APC)、实时优化(RT-OPT)用于提高装置操作、控制、管理水平,来追求更大的经济效益,已成为当今(特别是石化企业)迫切需要解决的热门手段。可是在这样大的热潮下,在线分析仪器却成了一个难题。我想应该再次呼吁从事分析仪器和自动化技术工作的同志们携起手来,重视并积极参与在线分析仪器的开发和生产。回顾半个世纪以来我国自动控制技术的发展,我们曾经忙忙碌碌地从研制简单的机械式
仪器仪表行业领域中的电子材料
电子专用材料我国电子专用材料产业已形成一个门类比较齐全、产业规模较大的行业。但硅材料、框架材料、电子陶瓷及氧化铟大型靶材等电子工业所急需的专用材料仍大部分需要从国外进口。近年来,我国在电子专用材料的开发和生产方面已具备一定基础。近期产业化的重点是:高性能软磁铁氧体材料及所需的高纯度原材料(Fe2o3和Mn3o4),高比容钽粉、细径钽丝,高性能电子浆料,大功率压电陶瓷和热释电陶瓷材料等功能陶瓷材料,氧化铟锡大型靶材,高性能液晶材料超净高纯化学试剂,电子特种气体,3英寸以上铌酸锂和钽酸锂单晶、光刻多晶胶、多晶硅、8英寸单晶硅及外延片,砷化镓材料,以及磷化铟、氮化镓、磷化镓单晶,超高亮度发光二胡管用化合物单晶及外延片,封装材料和焊料,微波介质等。纳米材料和特种粉末及其制品纳米材料因其纳米效应而具有特殊的性能和广泛的用途,是目前科技发展重要热点之一。近年来,我国在纳米材料的研究开发和应用方面取得了很大进展,形成了一批拥有自主知识产权的技术并开始产业化。近期产业化的重点是:以纳米粉体材料、纳米膜材料、纳米催化材料和纳米晶金属材料为重点,实现低成本、环境好以及质量稳定的规模化生产;加快纳米材料规模
电力检测仪表
建设节约型社会,电力质量好坏离不开在线检测数字功率计。目前市场上进口产品价格太贵,国产品种太少。改版后的VC3220系列智慧型手持式钳形功率计,*近投放市场。如雪中送炭,这个市场翘首以待半年之久的产品,一经亮相会给用户带来怎么样的惊喜呢?首先新的VC3220系列已经完全脱胎换骨。原来的功率计结构陈旧、可靠性比较差。改版后的系列产品采用1500A钳头和旋转式拨盘开关,全部元器件均为工业级即从-40℃~+80℃。这样保证在-20℃~+60℃范围内能够正常工作,尤其是在北方地区冬天户外作业时更显“英雄”本色。其性能及功能改善不仅如此。增加相序判别功能:在三相电路测试过程中,经常遇到三相相序的判别。在伊万其它产品中数显相序判别功能已经成为产品差异的特色,但其往往针对50Hz工频检测而言;VC3220系列相序判别时,在电路中专门增加计数周期的运算,从而保证在其它频率的相序判别中得到准确结果。测试电压可从45V~450V范围内自动调整,LCD显示为正相序、反相序及缺相指示;频率测量从分辨力1Hz提升到0.1Hz,对2kHz内信号与相序判别一键转换,使操作更为简便。扩大了电流