太阳能微纳米曝气装置技术简介
微纳米气泡发生装置主要由发生装置、微纳米曝气头及连接管件组成。通过水泵加压,由曝气头内部的曝气石高速旋转,在离心作用下,使其内部形成负压区,空气通过进气口进入负压区,在容器内部分成周边液体带和中心气体带,由高速旋转的出气部将空气均匀切割成直径5~30μm的微纳米气泡。由于气泡细小,不受空气在水中溶解度的影响,不受温度、压力等外部条件限制,可以在污水中长时间停留,具有良好的气浮效果。
1)微纳米曝气技术特性分析
水体中氧的传递是利用空气和污水中氧气的浓度梯度,使氧气由高密度的空气向低密度的污水中转移,因此氧气浓度梯度和接触面积决定了曝气效果。在氧气浓度梯度不变的条件下,空气与水体接触面积是决定曝气效果好坏的关键因素。
微纳米曝气技术有效解决了气泡在水体中的接触面积问题,其原因是由于微纳米气泡的表面积能有效增大,如0.1cm的大气泡分散成100nm微气泡,其表面积可增大10000倍,因此可以大大提高溶氧效率。同时,由于气泡的细小且具有良好的气浮性,可以在污水中长时间停留,从而能够达到实现较好曝气效果的目的。
由于微纳米气泡发生装置工作原理及所产生的气泡大小与常规曝气装置有很大的不同,因此该装置产生的微纳米气泡具有以下独有特点。
①电离现象:气体在水中的溶解度受气压影响较大,但电解质的离子化水可以让溶入的微纳米气泡表面形成双层电离子,并随着表面积的不断减少而急剧收缩,可以让气泡内的气体散逸得以抑制,从而大大提高了溶解度。
②超声波性:微纳米气泡由于高能破裂而产生超声波,这种超声波具有较强的杀jun作用。
③带电性:微纳米气泡表面带有负电荷,所以气泡间很难合为一体,在水体中能产生非常浓密而细腻的气泡,不会像常规气泡一样会融合增大而破裂。通常微纳米气泡的表面电位为-30~-50mV,可以吸附水体中带正电的物质。利用表面电荷对水体微粒的吸附性,可以把水体中的有机悬浮物固定而分离。因此,该技术在提高溶解氧的同时,也具有一定的水质净化效果。
④滞留性:微纳米气泡在水体中上升速度非常缓慢,似烟雾在水中弥漫,如10μm的气泡以100μm/S的速度上升、在水体中上升lm需花3h的时间,所以微纳米气泡会在水中逗留很长时间。该特性也是其具有高度溶解效率的核心所在。这种滞留性的产生除与气泡微小浮力减少有关外,更重要是由它的电性所致。如果采用极板进行观察,随着电极的转换,可以看到小气泡的极性运动和缓慢上升的现象。
太阳能微纳米曝气装置改善水质的主要作用
溶解氧是水体净化的重要因素之一。溶解氧高,有利于对水体中各类污染物的降解,从而使水体较快得以净化;反之,溶解氧低,水体中污染物降解缓慢。微纳米曝气技术对改善水质的作用主要有以下几个方面。
①消除有机物污染和黑臭:由于微纳米气泡具有很强的滞留性,能够提供更加充足的氧气,在丰富好氧微生物的条件下,有机物污染指标COD和BOD明显下降,黑臭现象消失。同时,水体底部的有机物降解所产生的甲烷、硫化氢等有毒和有害气体被去除。
②减少水体营养盐含量:由于微纳米气泡具有很强的气浮性、滞留性和扩散性,其上升作用弱,水体充氧后可有效抑制河道底部厌氧jun的有机质分解过程,减少水底氮、磷营养盐的释放量。
③消除藻类水华:微纳米曝气具有较强的复氧功能,可提高水生动植物的的生存环境,从而抑制藻类的生长。
④改善水色及透明度:被污染水体中的多种无机和有机悬浮物、活的浮游植物及死亡的残骸、大型水生植物碎屑、分解的有机体碎屑等是影响水色和透明度的主要物质。微纳米曝气能够更加有效地促进水生生物的生长,从而减少了水中有机质,使水体透明度明显提高,改善水色。
⑤减少底泥内源污染:微纳米曝气增氧后,河湖底质表层含氧量增加,好氧微生物活动趋强,通过微生物的代谢过程促进底泥有机污染物的降解,逐步形成无机化底质覆盖层,阻断内源污染。
3、太阳能供电组件
微纳米曝气主机与太阳能组件各自独立,通过连接框架组合为一体。供电部分主要由太阳能电池组件、控制系统组成,利用太阳能供电,驱动直流电机。采用储能式配置,工作时间允许无光照6~8H,适合安装水深(0.5~2.5m)。