一、 有效数字 为了取得准确的分析结果,不仅要准确测量,而且还要正确记录与计算。所谓正确记录是指记录数字的位数。因为数字的位数不仅表示数字的大小,也反映测量的准确程度。所谓有效数字,就是实际能测得的数字。
有效数字保留的位数,应根据分析方法与仪器的准确度来决定,一般使测得的数值中只有*后一位是可疑的。例如在分析天平上称取试样0.5000g,这不仅表明试样的质量0.5000g,还表明称量的误差在±0.0002g以内。如将其质量记录成0.50g,则表明该试样是在台称上称量的,其称量误差为0.02g,故记录数据的位数不能任意增加或减少。如在上例中,在分析天平上,测得称量瓶的重量为10.4320g,这个记录说明有6位有效数字,*后一位是可疑的。因为分析天平只能称准到0.0002g,即称量瓶的实际重量应为10.4320±0.0002g,无论计量仪器如何精密,其*后一位数总是估计出来的。因此所谓有效数字就是保留末一位不准确数字,其余数字均为准确数字。同时从上面的例子也可以看出有效数字是和仪器的准确程度有关,即有效数字不仅表明数量的大小而且也反映测量的准确度.
二、有效数字中"0"的意义
"0"在有效数字中有两种意义:一种是作为数字定值,另一种是有效数字.例如在分析天平上称量物质,得到如下质量:
物质 | 称量瓶 | Na2CO3 | H2C2O4·2H2O | 称量纸 |
质量(g) | 10.1430 | 2.1045 | 0.2104 | 0.0120 |
有效数字位数 | 6位 | 5位 | 4位 | 3位 |
以上数据中“0”所起的作用是不同的。在10.1430中两个“0”都是有效数字,所以它有6位有效数字。在2.1045中的“0”也是有效数字,所以它有5位有效数字。在0.2104中,小数前面的“0”是定值用的,不是有效数字,而在数据中的“0”是有效数字,所以它有4位有效数字。在0.0120中,“1”前面的两个“0”都是定值用的,而在末尾的“0”是有效数字,所以它有3位有效数字。
综上所述,数字中间的“0”和末尾的“0”都是有效数字,而数字前面所有的“0”只起定值作用。以“0”结尾的正整数,有效数字的位数不确定。例如4500这个数,就不会确定是几位有效数字,可能为2位或3位,也可能是4位。遇到这种情况,应根据实际有效数字书写成:
4.5×103 2位有效数字
4.50×103 3 位有效数字
4.500×103 4 位有效数字
因此很大或很小的数,常用10的乘方表示。当有效数字确定后,在书写时一般只保留%