企业信息
17
  • 入驻时间: 2008-08-20
  • 联系人:客户经理
  • 电话:400-968-7988
  • 联系时,请说明易展网看到的
  • Email:fuwu@bioleaf.com
产品详情
  • 产品名称:Nanoprobes

  • 产品型号:授权签约代理
  • 产品厂商:Nanoprobes
  • 产品价格:0
  • 折扣价格:0
  • 产品文档:
你添加了1件商品 查看购物车
简单介绍:
Nanoprobes公司 Nanoprobes代理 Nanoprobes**代理 Nanoprobes中国代理 1.4nm的纳米金探针 授权签约代理
详情介绍:

Nanoprobes公司 Nanoprobes代理 Nanoprobes**代理 Nanoprobes中国代理


1.4nm的纳米金探针 授权签约代理


Nanoprobes公司专业生产免疫金标记和免疫测定试验产品。公司建立之初即研发用于检测生物分子的*灵敏的试剂和技术。其独特的金标技术使用化学交联的金属和纳米颗粒团簇作为标记。与胶体金颗粒静电吸附在抗体和蛋白质上的传统免疫金探针不同,本公司的金标是与生物分子在特定位点交联的不带电荷的分子。这使我们的探针具有胶体金不具备的范围和灵活性。
我们的标记可以附着在任何带有反应基的分子上– 蛋白质、多肽、寡核苷酸、小分子和脂类 - 以检测和定位这些分子。其他标记可以与我们的金标共同使用,我们独特的荧光纳米金探针在一个探针中结合了纳米金(Nanogold®)和荧光素,用于荧光和电镜两种技术共同进行样品成像。
新探针可基于天然生物分子的一个片段设计制作,标记可定位于远离结合位点处从而不影响探针与目标位点的结合。
Nanoprobe生产的1.4nm的纳米金探针被80多篇文献引用。我们目前正在研发更大的可交联的标记,为客户提供更大的、可共价连接的,具有与1.4nm 纳米金探针相同优点的探针。
Nanoprobe研发了扩展金标应用的新技术,可用于更灵敏、更快速的医学诊断。 我们提供一系列用于化学扩增、染色和成像的辅助试剂。 同时也研发金属团簇和纳米颗粒作为新材料、传感器和数据存储介质的组分的新应用。Nanoprobe提供*新的检测技术和试剂。
我们技术精湛的研究团队由化学家和生物物理学家组成,并与在此领域**的研究人员合作。公司获得NIH和NSF小企业**项目的几项拨款,这些款项资助了公司的多个科研活动。
Nanoprobe公司**生产和销售独特的产品Nanogold®及结合了荧光与免疫金探针的FluoroNanogold。另外还生产一个完整的3、5、10、15、30nm胶体金探针的产品系列,和一个包括具有独特优点的银增强和负染试剂产品系列。公司产品畅销全球。
主要产品:
结合了抗体/荧光标记/脂类/链霉亲和素的纳米金
金增强/银增强试剂
EnzMetTM-替代HRP底物,检测灵敏度高,分辨率高,用于原位杂交/免疫组化/关联显微系统/免疫斑点/蛋白杂交等
3-5nm/2-4nm/0.8nm/1.4nm, 带正电/负电/不带电荷,亲水/疏水的纳米金颗粒
检测his标签重组蛋白的Goldiblot(用于蛋白杂交)和Ni-NTA纳米金
纳米磁珠:超顺磁,具生物兼容性
负染试剂:NanoVan(钒),Nano-W(有机钨)
带不同反应基的纳米金颗粒
X-射线造影剂:AuroVistTM, EnzMetTM

产品:


  1. EnzMetTM - 新的生物标记和染色方法(Nanoprobe研发的**产品),使用酶探针选择性的将银沉积在目标位置,可替代HRP底物。


应用:
可替代HRP底物,用于原位杂交/免疫组化/电镜/关联显微系统/免疫斑点/蛋白杂交等
优点:
染色清晰度优于传统生色或荧光底物,长久不褪色,不扩散 
可检测内源单拷贝基因(原位杂交中)!超高灵敏度 
高分辨率 
背景接近零 
无需更多处理,染色即在电镜下可见 
[EnzMet vs. DAB: ISH of HER2 gene in amplified tissue (36k)][EnzMet - ISH mechanism (31k)]





免疫组化:DAB(左)EnzMet(右)染HER2扩增的组织


品名

产品描述

货号

规格

EnzMet? IHC / ISH HRP Detection Kit

专为免疫组化和原位杂交优化的HRP检测试剂盒

6001

150张载玻片 
30ml

EnzMet? Western Blot HRP Detection Kit

在蛋白杂交中获得*高灵敏度的EnzMet

6002

100ml

EnzMet? for General Research Applications

普通实验用的EnzMet

6010

45ml

References:


    • J. F. Hainfeld, et al., Microsc. Microanal. 8 (Suppl. 2) (2002) 916 CD.
    • R. Tubbs, J. Pettay, et al. J. Mol. Histol. 35 (2004) 589.
    • R. Tubbs, J. Pettay, J., et al. Appl. Immunohistochem. Mol. Morphol. 13 (2005) 371.
    • A. Cali & P. M. Takvorian, Southeast Asian Trop. Med. Public Health, 35 (Suppl. 1) (2004) 58.
    • A. Cali, L. M. Weiss, and P. M. Takvorian, J. Euk. Microbiol., 49 (2003) 164.
    • E.M. Keohane, G.A. Orr, et al., Mol. Biochem. Parasitol., 94 (1998) 227. This work was supported by NIH SBIR grant 2R44 GM064257-02A1 and NIH grant 2R01 AI031788. The authors thank Ventana Medical Systems, Incorporated for the I-View reagent.
      Ni-NTA纳米金 – 特异性结合his标签蛋白,用于标记his标签蛋白:
    应用:
    透射电镜/扫描透射电镜、光学显微镜、蛋白杂交、纯化his标签蛋白时,识别含目的蛋白的部分等实验。 
    优点:
    灵敏度高 
    探针小,分辨率高,1.8 nm Ni-NTA-纳米金比抗体探针小 
    高溶解度,稳定 
    无背景 
    长久染色 
    5 nm Ni-NTA-纳米金在电镜下可见,不需金增强/银增强 
    使用简单 

    Structure and STEM (39k)
    左:1.8nm Ni-NTA-纳米金与his标签蛋白相互作用右:用Ni-NTA-纳米金标记6xhis腺病毒Knob蛋白,未染色的扫描电镜照片
    left: Structure of Ni-NTA-Nanogold® showing interaction with Interaction with a His-tagged protein; right: Knob protein from adenovirus cloned with 6x-His tag, labeled with Ni-NTA-Nanogold, column purified from excess gold, and viewed in the scanning transmission electron microscope (STEM) unstained (Full width approximately 245 nm).

    [Ni-NTA-5 nm Gold structure, and TEM View (141k)]
    上:5nm Ni-NTA-纳米金的结构,显示金属螯合物与his标签蛋白结合
    下:5nm Ni-NTA-纳米金的扫描电镜图,平均直径5.11±0.84nm
    Top: Structure of NTA-Ni(II)-5 nm Nanogold®, showing the binding of the incorporated metal chelate to a His-tagged protein; distance from the gold particle surface to the His tag is estimated to be 1.5 nm. Above: Transmission electron micrograph of 5 nm NTA Nanogold: average diameter 5.11±0.84nm.

    品名

    产品描述

    货号

    规格

    1.8 nm Ni-NTA-Nanogold®

    比抗体小,更易渗透入组织,定位和检测细胞、组织或蛋白复合物中的his标签蛋白。

    2080

    10uM 30ml

    5 nm Ni-NTA-Nanogold®

    目标量达一定程度时,无需银增强/金增强可直接用电镜观察

    2082

    0.5uM 3ml

    相关产品:


    GoldEnhance LM/Blot (GELM)

    金增强试剂,用于光镜样品

    2112

    Initiator/Moderator/Activator/Buffer
    各15 ml(共60 ml,足够做600张载玻片)

    GoldEnhance EM(GEEM)

    金增强试剂,用于电镜样品

    2113

    Initiator/Moderator/Activator/Buffer
    各2 ml(共8 ml,足够做200个网格)

    HQ Silver

    用于纳米金的质量*佳的增强试剂,均匀显影,极好的保持结构,特别适合电镜,光敏感

    2012

    Initiator/Moderator/Activator
    各15 ml(共45 ml)

    Li Silver

    纳米金的银增强,用于电镜、光镜、凝胶、杂交,光不敏感

    2013

    Initiator/Enhancer
    125 ml (共250 ml)

    References: 
    1. Kollman, J. M.; Zelter, A.; Muller, E. G.; Fox, B.; Rice, L. M.; Davis, T. N., and Agard, D. A.: The Structure of the gamma-Tubulin Small Complex: Implications of Its Architecture and Flexibility for Microtubule Nucleation. Mol. Biol. Cell, 19, 207-215 (2008).
    2. Adami, A.; Garcia-Alvarez, B.; Arias-Palomo, E.; Barford, D., and Llorca, O.: Structure of TOR and its complex with KOG1. Mol. Cell., 27509-516 (2007).
    3. Balasingham, S. V.; Collins, R. F.; Assalkhou, R.; Homberset, H.; Frye, S. A.; Derrick, J. P., and Tonjum, T.: Interactions between the Lipoprotein PilP and the Secretin PilQ in Neisseria meningitidis. J. Bacteriol., 189, 5716-5727 (2007).
    4. Jiang, Z. G.; Simon, M. N.; Wall, J. S., and McKnight, C. J.: Structural analysis of reconstituted lipoproteins containing the N-terminal domain of apolipoprotein B. Biophys. J., 92, 4097-4108 (2007).
    5. Pye, V. E, Beuron, F, Keetch, C. A, McKeown, C, Robinson, C. V, Meyer, H. H, Zhang, X, and Freemont, P. S.: Structural insights into the p97-Ufd1-Npl4 complex. Proc. Natl. Acad. Sci. USA, 104, 467-472 (2007).
    6. Promnares, K.; Komenda, J.; Bumba, L.; Nebesarova, J.; Vacha, F., and Tichy, M.: Cyanobacterial Small Chlorophyll-binding Protein ScpD (HliB) Is Located on the Periphery of Photosystem II in the Vicinity of PsbH and CP47 Subunits. J. Biol. Chem., 281, 32705-32713 (2006).
    7. Collins, R. F.; Beis, K.; Clarke, B. R.; Ford, R. C.; Hulley, M.; Naismith, J. H.; and Whitfield, C.: Periplasmic protein-protein contacts in the inner membrane protein Wzc form a tetrameric complex required for the assembly of Escherichia coli group 1 capsules. J. Biol. Chem.,281, 2144-2150 (2006).
    8. Wolfe, C. L.; Warrington, J. A.; Treadwell, L., and Norcum, M. T.: A three-dimensional working model of the multienzyme complex of aminoacyl-tRNA synthetases based on electron microscopic placements of tRNA and proteins. J. Biol. Chem., 280, 38870-38878 (2005).
    9. Bumba, L.; Tichy, M.; Dobakova, M.; Komenda, J., and Vacha, F.: Localization of the PsbH subunit in photosystem II from the Synechocystis 6803 using the His-tagged NiNTA Nanogold labeling. J. Struct. Biol., 152, 28-35 (2005)
    10. Collins, R. F.; Frye, S. A.; Balasingham, S.; Ford, R. C.; Tonjum, T., and Derrick, J. P.: Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ. J. Biol. Chem., 280, 18923-18930 (2005).
    11. Chatterji, A.; Ochoa, W. F.; Ueno, T.; Lin T., and Johnson, J. E.: A virus-based nanoblock with tunable electrostatic properties. Nano Lett.,5, 597-602 (2005).
    12. Buchel, C.; Morris, E.; Orlova, E., and Barber, J.: Localisation of the PsbH subunit in photosystem II: a new approach using labelling of His-tags with a Ni(2+)-NTA gold cluster and single particle analysis. J. Mol. Biol., 312, 371-379 (2001).
    13. Hainfeld, J. F.; Liu, W.; Halsey, C. M. R.; Freimuth, P., and Powell, R. D.: Ni-NTA-Gold Clusters Target His-Tagged Proteins. J. Struct. Biol., 127, 185-198 (1999).
    14. Hainfeld, J. F.; Liu, W.; Joshi, V., and Powell R. D.: Nickel-NTA-Nanogold Binds his-Tagged Proteins. Microsc. Microanal., 8(Suppl. 2: Proceedings) (Proceedings of Microscopy and Microanalysis 2002); Voekl, E.; Piston, D.; Gauvin, R.; Lockley, A. J.; Bailey, G. W., and McKernan, S., Eds.; Cambridge University Press, New York, NY, 2002, p. 832CD.

    GoldiBlot? HIS Western Blot Kit:Ni-NTA-纳米金颗粒
    应用:
    1.蛋白杂交检测带his标签的重组蛋白(染色时间1小时) 
    2.识别细胞裂解液或提取物中的his标签蛋白 
    3.证实转染细胞中his标签蛋白的表达 
    优点:
    更快更灵敏
    低背景 
    长久信号 
    [GoldiBlot Western Blot (43k)]

    品名

    产品描述

    货号

    规格

    GoldiBlot? HIS Western Blot Kit

    用于在蛋白杂交中检测his重组蛋白的

    2090

    15个杂交

    References:

    1. Dubendorff, J.; Cruz, M.; Gonzalez, C.; Hainfeld, J.; Liu, W.: Rapid Detection of His-tagged Proteins on Western Blots Proc. 47th Ann. Mtg., Amer. Soc. Cell Biol., 47; Pres. # 1918., poster # B265 (2007).


金纳米颗粒:3-5nm/2-4nm/0.8nm/1.4nm, 带正电/负电/不带电荷,溶于两性/亲水/疏水溶剂的化学功能化纳米金颗粒,用带化学基团的不同配基包被和稳定,溶解性不同 
    应用:在多种系统和环境中的应用广泛

    品名

    产品描述

    货号

    规格

    1-Mercapto-(triethylene glycol) methyl ether functionalized gold nanoparticles

    两性3 - 5 nm纳米金颗粒,溶于甲苯、氯仿、乙酸乙酯、丙酮、水、乙醇等溶剂

    3012

    80 mg

    (1-Mercaptoundec-11-yl) tetraethyleneglycol functionalized gold nanoparticles

    亲水3 - 5 nm纳米金颗粒,溶于乙醇、水

    3013

    80 mg

    Dodecanethiol functionalized gold nanoparticles

    疏水3 - 5 nm纳米金,用于甲苯等有机溶剂

    3014

    80 mg

    Octanethiol functionalized gold nanoparticles

    疏水2 - 4 nm纳米金,用于甲苯等有机溶剂

    3015

    80 mg



AuroVistTM :X-射线造影剂 

    优点:
    1. 用于活体,不破坏组织
    2. 低毒性
    3. 高对比度,比碘造影剂高3倍
    4. 显微CT可成像直径为20um的血管
    5. 1.9nm纳米金在血液中存留时间比碘造影剂长
    6. 使用浓度可比碘造影剂高4倍多
    7. 高浓度时渗透压低
    8. 低粘度,可注射
    9. 肾脏将其清除

    mouse [ (93k)]
    Live mouse 1 hour after injection with AuroVist?, showing kidney contrast and fine structure (bar = 1 mm).

    (upper): Live mouse, 2 minutes after injection 
    showing vascular fine structure; (lower) MicroCT of 
    mouse inferior vena cava (bar = 1mm).

    品名

    产品描述

    货号

    规格

    AuroVistTM-1.9nm

    在水、PBS或其他缓冲液中即溶

    1102

    40 mg Au

    AuroVistTM-15nm

    产品已溶于PBS,并经0.22 um 膜过滤

    1115

    40 mg Au

    References:
    MicroCT Imaging

    1.  Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M, and Smilowitz, H. M.: Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol., 79, 248-253 (2006).

    In Vivo Vascular Casting

    1.  Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M., and Smilowitz, H. M.: In Vivo Vascular Casting. Microsc. Microanal., 11, (Suppl. 2: Proceedings); Price, R.; Kotula, P.; Marko, M.; Scott, J. H.; Vander Voort, G. F.; Nanilova, E.; Mah Lee Ng, M.; Smith, K.; Griffin, P.; Smith, P., and McKernan, S., Eds.; Cambridge University Press, New York, NY, p. 1216CD (2005).

    Radiation Therapy Enhancement

      •  Hainfeld, J. F., Slatkin, D. N., and Smilowitz, H. M.: The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol.,49, N309-N315 (2004).


纳米金结合物共价结合了Fab’/IgG/链酶亲和素的纳米金,是*小的免疫金标探针,优于胶体金 
      应用:
      市场上*小的免疫金标探针
      优点:
      金颗粒与Fab’或IgG比例接近1
      粒径小(1.4nm),且均匀
      低背景
      灵敏度高
      稳定

      品名

      产品描述

      货号

      规格

      Nanogold-链酶亲和素

       

      2016

      0.5ml

      1ml

      Nanogold-山羊抗生物素

      IgG

      2015

      0.5ml

      1ml

      Nanogold-山羊抗小鼠IgG

      IgG

      2001

      0.5ml

      1ml

      Fab’

      2002

      0.5ml

      1ml

      Nanogold-山羊抗兔IgG

      IgG

      2003

      0.5ml

      1ml

      Fab’

      2004

      0.5ml

      1ml

      Nanogold-兔抗山羊IgG

      IgG

      2005

      0.5ml

      1ml

      Fab’

      2006

      0.5ml

      1ml

      Nanogold-山羊抗大鼠IgG

      IgG

      2007

      0.5ml

      1ml

      Fab’

      2008

      0.5ml

      1ml

      Nanogold-兔抗绵羊IgG

      IgG

      2050

      0.5ml

      1ml

      Fab’

      2051

      0.5ml

      1ml

      Nanogold-山羊抗人IgG

      IgG

      2052

      0.5ml

      1ml

      Fab’

      2053

      0.5ml

      1ml

      Nanogold-山羊抗豚鼠IgG

      IgG

      2054

      0.5ml

      1ml

      Fab’

      2055

      0.5ml

      1ml

      用CARD扩增的纳米金+银增强检测Hela细胞中单个拷贝HPV16的原位杂交 
      扫描透射电镜图片 (左)羊抗小鼠胶体金 (右)羊Fab’抗小鼠纳米金

      CARD-Nanogold detection of Sinlge-Copy HPV-16 in SiHa cells (59k)STEM Micrograph of Nanogold-IgG conjugate (36k)Light Micrograph of Nanogold vs. colloidal gold-Labeled Microtubules (81k)

      References: 
      Nanogold® Antibody Conjugates

      1. Bendayan, M.: Worth its weight in gold. Science, 291, 1363-5 (2001).
      2. Bergles, D. E.; Roberts, J. D. B.; Somogyi, P., and Jahr, C. E.: Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature, 405, 187-190 (2000).
      3. D’Este, L.; Kulaksiz, H.; Rausch, U.; Vaccaro, R.; Wenger, T.; Tokunaga, Y.; Renda, T. G.; Cetin, Y.: Expression of guanylin in "pars tuberalis-specific cells" and gonadotrophs of rat adenohypophysis Proc. Natl. Acad. Sci. USA, 97, 1131-1136 (2000).
      4. Feng, D.; Nagy, J. A.; Brekken, R. A.; Pettersson, A.; Manseau, E. J.; Pyne, L.; Mulligan, R.; Thorpe, P. E.; Dvorak, H. F., and Dvorak, A. M.: Ultrastructural localization of the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) receptor-2 (FLK-1, KDR) in normal mouse kidney and in the hyperpermeable vessels induced by VPF/VEGF-expressing tumors and adenoviral vectors J. Histochem. Cytochem., 48, 545-555 (2000).
      5. Grondin, G., and Beaudoin, A. R.: A New Pre-Embedding Immunogold Method that Permits to Obtain a Very High Signal with a Very Good Ultrastructure. Microsc. Microanal., 7, (Suppl. 2: Proceedings) (Proceedings of the Fifty-Ninth Annual Meeting, Microscopy Society of America); Bailey, G. W.; Price, R. L.; Voelkl, E., and Musselman, I. H., Eds.; Springer-Verlag, New York, NY, 2001, pp. 1044-1045.
      6. Hainfeld, J. F.: Labeling with Nanogold and undecagold: techniques and results. Scanning Microsc. Suppl. (Proc. 14th Pfefferkorn Conf.); Malecki, M., and Roomans, G. M. (Eds.). Scanning Microscopy International, Chicago, IL, 10, 309-322 (1996).
      7. Ikeda, Y.; Martone, M.; Gu, Y.; Hoshijima, M.; Thor, A.; Oh, S. S.; Peterson, K. L., and Ross, J., Jr.: Altered membrane proteins and permeability correlate with cardiac dysfunction in cardiomyopathic hamsters Am. J. Physiol. Heart Circ. Physiol., 278, H1362-H1370 (2000).
      8. Kohler, A.; Lauritzen, B., and Van Noorden, J. F.: Signal amplification in immunohistochemistry at the light microscopic level using biotinylated tyramide and Nanogold-silver staining J. Histochem. Cytochem., 48, 933-941 (2000).
      9. Malecki, M.: Preparation of plasmid DNA in transfection complexes for fluorescence and spectroscopic imaging. Scanning Microsc. Suppl. (Proc. 14th Pfefferkorn Conf.); Malecki, M., and Roomans, G. M. (Eds.). Scanning Microscopy International, Chicago, IL, 10, 1-16 (1996).
      10. Robinson, J. M.; Takizawa, T., and Vandré, D. D.: Applications of gold cluster compounds in immunocytochemistry and correlative microscopy: comparison with colloidal gold. J. Microsc., 199, 163-79 (2000).
      11. Robinson, J. M.; Takizawa, T., and Vandré: Enhanced immunolabeling efficiency using ultrasmall immunogold probes: Immunocytochemistry J. Histochem. Cytochem., 48, 487-492 (2000).
      12. Sawada, H., and Esaki, M.: A practical technique to postfix Nanogold-immunolabeled specimens with osmium and to embed them in Epon for electron microscopy J. Histochem. Cytochem., 48, 493-498 (2000).
      13.  Tolstonog, G. V.; Sabasch, M., and Traub, P.: Cytoplasmic Intermediate Filaments Are Stably Associated with Nuclear Matrices and Potentially Modulate Their DNA-Binding Function. DNA Cell Biol., 21, 213-39 (2002).
      14. Yang, R.; Tabata, S.; Crowley, H. H.; Margolskee, R. F., and Kinnamon, J. C.: Ultrastructural localization of gustducin immunoreactivity in microvilli of type II taste cells in the rat. J. Comp. Neurol., 11, 139-151 (2000).
      15. Yoshimori, T.; Yamagata, F.; Yamamoto, A.; Mizushima, N.; Kabeya, Y.; Nara, A.; Miwako, I.; Ohashi, M.; Ohsumi, M., and Ohsumi, Y.: The Mouse SKD1,a homologue of yeast Vps4p, is required for normal endosomal trafficking and morphology in mammalian cells Mol. Biol. Cell, 11, 747-763 (2000).
      16. Zirwes, R. F.; Eilbracht, J.; Kneissel, S., and Schmidt-Zachmann, M. S.: A novel helicase-type protein in the Nucleolus: protein NOH61Mol. Biol. Cell, 11, 1153-1167 (2000).
      17. Ackerly, C. A., Becker, L. E., Tilups, A., Rutlka, J. T., and Mancuso, J. F.: CCD Cameras facilitate the imaging of small gold particles in immunogold-labelled ultrathin cryosections. In Proc 54th Ann. Mtg. Micros. Soc. Amer., G. W. Bailey, J. M. Corbett, R. V. W. Dimlich, J. R. Michael and N. J., Zaluzec (Eds.). San Francisco Press, San Francisco, CA, pp. 904-905 (1996).
      18. Adams, I. R., and Kilmartin, J. V.: Localization of core spindle body (SPB) components during SPB duplication in Saccharomyces cerevisiaeJ. Cell Biol., 145, 809-823 (1999).
      19. Aoki, T.; Hagiwara, H., and Fujimoto, T.: Peculiar Distribution of Fodrin in Fat-Storing Cells; Exp. Cell. Res., 234, 313-320 (1997).
      20. Baude, A.; Nusser, Z.; Molnar, E.; McIlhinney, R. A. J., and Somogyi, P.: High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience, 69, 1031-1055 (1995).
      21. Baude, A., Nusser, A., Roberts, J.D.B., Mulvihill, E., McIlhinney, R.A.J., and Somogyi, P. The metabotropic glutamate receptor (mGluR1 a) is concentrated at perisynaptic membranes of neuronal subpopulations as detected by immunogold reaction. Neuron, 11, 771-787 (1993).
      22. Bernard, V.; Levey, A. I., and Bloch, B.: Regulation of the subcellular distribution of m4 muscarinic acetylcholine receptors in striatal neurons in vivo by the cholinergic environment: evidence for regulation of cell surface receptors by endogenous and exogenous stimulation J. Neurosci., 19, 10237-10249 (1999).
      23. Bernard, V.; Somogyi, P., and Bolam, J. P.: Cellular, subcellular and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J. Neuroscience, 17, 819-833 (1997).
      24. Boisset, N. et al. Electron Microscopy of alpha-2- Macrogolobulin with a thiol ester bound ligand. J. Struct. Biol., 108, 221-226 (1992).
      25. Braig, K., Simon, M., Furuya, F., Hainfeld, J.F., and Horwich, A.L. A polypeptide bound by the chaperonin groEL is localized within a central cavity. Proc. Natl. Acad.Sci., 90, 3978-3982 (1993).
      26. Burry, R.W., Vandrée, D. D., and Hayes, D. M.: Silver enhancement of gold antibody probes in pre-embedding electron microscopic immunocytochemistry. J. Histochem. Cytochem., 40, 1849-1856 (1992).
      27. Du, J.; Tao-Cheng, J.-H.; Zerfas, P., and McBain, C. J. The K+ channel, Kv2.1, is apposed to astrocytic processes and is associated with inhibitory postsynaptic membranes in hippocampal and cortical principal neurons and inhibitory interneurons. Neuroscience, 84, 37-48 (1998).
      28. Fagotto, F.; Jho, E.-H.; Zeng, L.; Kurth, T.; Joos, T.; Kaufmann, C., and Constantini, F.: Domains of axin involved in protein-protein interactions, Wnt pathway inhibition, and intracellular localization. J. Cell Biol., 145, 741-756 (1999).
      29. Gardiol, A., Racca, C., and Triller, A.: Dendritic and Postsynaptic Protein Synthetic Machinery. J. Neuroscience, 19, 168-179 (1999).
      30. Gregori, L., Hainfeld, J. F., Simon, M. N., and Goldgaber, D. Binding of amyloid beta protein to the 20S proteasome. J. Biol. Chem., 272, 58-62 (1997).
      31. Gilerovitch, H.G., Bishop, G.A., King, J.S., and Burry, R.W. Demonstration of GAD in Purkinje-cell terminals with silver enhanced gold immunocytochemistry. In G. Bailey and C.L. Rieder (Eds.), Proc. 51st Ann. Mtg. Micros. Soc. Amer., San Francisco Press, pp. 288-289 (1993).
      32. Gilerovitch, H.G., Bishop, G.A., King, J.S., and Burry, R.W. The use of electron microscopic immunocytochemistry with silver-enhanced 1.4nm gold particles to localize GAD in the cerebellar nuclei. J. Histochem. Cytochem., 43, 337-43 (1995).
      33. Griffing, L. R., Villanueva, M. A., Taylor, J., and Moon, S.: Confocal Epipolorization Microscopy of Gold Probes in Plant Cells and Protoplasts; Methods in Cell Biology, 49, 109-121 (1995).
      34. Gutekunst, C.-A.; Li, S.-H.; Yi, H.;Mulroy, J. S.; Kuemmerle, S.; Jones, R.; Rye, D.; Ferrante, R. J.; Hersch, S. M., and Li, X.-J.: Nuclear and Neuropil Aggregates in Huntington’s Disease: Relationship to Neuropathology. J. Neuroscience, 19, 2522-2534 (1999).
      35. Hainfeld, J.F. Site specific cluster labels. Ultramicroscopy, 46, 135-144 (1992).
      36. Hainfeld, J. F., and Furuya, F. R.: Silver-enhancement of Nanogold and undecagold: in Immunogold-Silver Staining: Principles, Methods and Applications," M. A. Hayat (Ed.); CRC Press, Boca Raton, FL, 1995, pp. 71-96.
      37. Hainfeld, J.F. and Furuya, F.R. A 1.4nm Gold cluster covalently attached to antibodies improves immunolabeling, J. Histochem. Cytochem., 40, 177-184 (1992).
      38. Hainfeld, J. F., and Powell, R. D.: Nanogold Technology: New Frontiers in Gold Labeling. Cell Vision, 4, 408-432 (1997).
      39. Halasy, K.; Buhl, E. H.; L?rinczi, Z.; Tamás, G., and Somogyi, P: Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus. Hippocampus, 6, 306-329 (1996).
      40. Hanson, J. E., and Smith, Y.: Group I metabotropic glutamate receptors at GABAergic synapses in monkeys; J. Neurosci., 19, 6488-6496 (1999).
      41. Hearne, C. E.; Johnson, D. L., and Van Campen, H.: Immunogold-Silver Staining (IGSS) of (NCP and CP) BVDV-infected subcellular fraction bands; In Proc 55th Ann. Mtg. Micros. Soc. Amer., G. W. Bailey, R. V. W. Dimlich, K. B. Alexander, J. J. McCarthy and T. P. Pretlow (Eds.). Springer-Verlag, New York, NY, pp. 155-156 (1997).
      42. Hearne, C. E., and Van Campen, H.: Immunogold-Silver Staining (IGSS) of agarose embedded (NCP) BVDV-infected cell suspensions; In Proc 54th Ann. Mtg. Micros. Soc. Amer., G. W. Bailey, J. M. Corbett, R. V. W. Dimlich, J. R. Michael and N. J., Zaluzec (Eds.). San Francisco Press, San Francisco, CA, pp. 902-903 (1996).
      43. Hermann, R., Walther, P., and Muller, M.: Immunogold labeling in scanning electron microscopy; Histochem. Cell Biol., 106, 31-39 (1996).
      44. Humbel, B. M.; De Jong, M. D. M.; Müller, W. H., and Verkleij, A. J.: Pre-embedding immunolabeling for electron microscopy: An evaluation of permeabilization methods and markers. Microsc. Res. Tech., 42, 43-58 (1998).
      45. Humbel, B. M.; Sibon, O. C. M.; Stierhof, Y.-D., and Schwarz, H.: Ultra-small gold particles and silver enhancement as a detection system in immunolabeling and In Situ hybridization experiments; J. Histochem. Cytochem., 43, 735-737 (1995).
      46. Kloboucek, A.; Behrisch, A.; Faix, J., and Sackmann, E.: Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study. Biophys. J., 77, 2311-2328 (1999).
      47. Krenács, T., and Krenács, L.: Immunogold-silver staining (IGSS) for single and multiple antigen detection in archived tissues following antigen retrieval. Cell Vision, 4, 387-393 (1997).
      48. Krenács, T. and Dux, L. Silver-enhanced immunogold labeling of calcium-ATPase in sarcoplasmic reticulum of skeletal muscle. J. Histochem. Cytochem., 42, 967-968 (1994).
      49. Lackie, P. M.: Immunogold silver staining for light microscopy; Histochem. Cell. Biol., 106, 9-17 (1996).
      50. Larrson, L.-I.: Immunogold labeling of neuroendocrine peptides with special reference to antibody specificity and multiple staining techniques [review]; Histochem. Cell. Biol., 106, 93-103 (1996).
      51. Li, H.; Ohishi, H.; Kinoshita, A.; Shigemoto, R.; Nomura, S., and Mizuno, N.: Localization of a metabotropic glutamate receptor, mGluR7, in axon terminals of presumed nociceptive, primary afferent fibers in the superficial layers of the spinal dorsal horn: an electron microscope study in the rat. Neuroscience lett., 223, 153-156 (1997).
      52. Li, S.-H.; Cheng, A. L.; Li, H., and Li, X.-J.: Cellular effects and altered gene expression in PC12 cells stably expressing mutant huntingtin. J. Neuroscience, 19, 5159-5172 (1999).
      53. Lipschitz, D. L., and Michel, W. C.: Physiological Evidence for the discrimination of L-arginine from structural analogues by the zebrafish olfactory system J. Neurophysiol., 82, 3160-3167 (1999).
      54. Lujan, R.; Nusser, Z.; Roberts, J. D. B.; Shigemoto R.; Ohishi, H., and Somogyi, P.: Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1-alpha, mGluR1 and mGluR5, relative to neurotransmitter release sites. J. Chem. Neuroanat., 13, 219-241 (1997).
      55. Lujan, R.; Nusser, Z.; Roberts, J. D. B.; Shigemoto R., and Somogyi, P.: Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neuroscience, 8, 1488-1500 (1996).
      56. Matsubara, A., Laake, J. H., Davanger, S., Usami, S.-I., and Otterson, O. P.; Organization of AMPA receptor subunits at a glustamate synapse: A quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J. Neuroscience, 16, 4457-4467 (1996).
      57. Matsuzaki, T.; Suzuki, T.; Koyama, H.; Tanaka, S., and Takata, K.: Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. J. Histochem. Cytochem., 47, 1275-1286 (1999).
      58. Mizoguchi, A.; Yano, Y.; Hamaguchi, H.; Yanagida, H.; Ide, C.; Zahraoui, A.; Shirataki, H.; Sasaki, T., and Takai, Y.: Localization of Rabphilin-3A on the synaptic vesicle. Biochem. Biophys. Res. Commun, 202, 1235-1243 (1999).
      59. Nixon, G. F., Mignery, G. A., and Somlyo, A. V.: Immunogold localization of inositol 1,4,5-trisphosphate receptors and characterization of ultrastructural features of the sarcoplasmic reticulum in phasic and tonic smooth muscle; J. Muscle Res. Cell Mot., 15, 682-700 (1994).
      60. Nusser, Z.; Cull-Candy, S., and Farrant, M.; Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude;Neuron, 19, 697-709 (1997).
      61. Nusser, Z.; Hajos, N.; Somogyi, P., and Mody, I.: Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses; Nature, 395, 172-177 (1998).
      62. Nusser, Z.; Mulvihill, E.; Streit, P., and Somogyi, P.: Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience, 61, 421-427 (1994).
      63. Nusser, Z.; Roberts, J. D. B.; Baude, A.; Richards, J. G., and Somogyi, P. Relative densities of synaptic and extrasynaptic GABA-A receptors on cerebellar granule cells as determined by a quantitative immunogold method. J. Neuroscience; 15, 2948-2960 (1995).
      64. Nusser, Z.; Roberts, J. D. B.; Baude, A.; Richards, J. G.; Sieghart, W., and Somogyi. P. Immunocytochemical localization of the alpha-1 and beta-2/3 subunits of the GABA-A receptor in relation to specific GABAergic synapses in the dentate gyrus. Eur. J. Neurosci., 7, 630-646 (1995).
      65. Nusser, Z.; Sieghart, W.; Benke, D.; Fritschy, J.-M., and Somogyi, P.: Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA, 93, 11939-11944 (1996).
      66. Nusser, Z., Sieghart, W., and Somogyi, P.: Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neuroscience, 18, 1693-1703 (1998).
      67. Nusser, Z.; Sieghart, W.; Stephenson, F. A., and Somogyi, P.: The alpha-6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells. J. Neuroscience, 16, 103-114 (1996).
      68. Nusser, Z., and Somogyi, P.: Compartmentalised distribution of GABAA and glutamate receptors in relation to transmitter release sites on the surface of cerebellar neurones. Prog. Brain Research, (C. I. De Zeeuw, P. Strata and J. Voogd, Eds.), Elsevier, Oxford, UK.; 114, 1488-1500 (1997).
      69. Pohl, K., and Stierhof, Y.-D.: Action of gold chloride ("Gold toning") on silver-enhanced 1 nm gold markers. Microsc. Res. Tech., 42, 66-79 (1998).
      70. Punnonen, E.-L., Fages, C., Wartiovaara, J., and Rauvala, H.: Ultrststructural Localization of beta-Actin and Amphoterin mRNA in Cultured Cells: Application of tyramide signal amplification and comparison of detection methods; J. Histochem. Cytochem., 47, 99 (1999).
      71. Robinett, C. C., Straight, A., Li, G., Willhelm, C., Sudlow, G., Murray, A., and Belmont, A. S.: In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol., 135, 1685-1700 (1996).
      72. Robinson, J. M., and Takizawa, T.: Novel Labeling methods for EM analysis of ultrathin cryosections. In Proc 54th Ann. Mtg. Micros. Soc. Amer., G. W. Bailey, J. M. Corbett, R. V. W. Dimlich, J. R. Michael and N. J., Zaluzec (Eds.). San Francisco Press, San Francisco, CA, pp. 894-895 (1996).
      73. Salas, P. J. I.: Insoluble gamma-tubulin-containing structures are anchored to the apical network of intermediate filaments in polarized CACO-2 epithelial cells. J. Cell Biol., 146, 645-657 (1999).
      74. Sawada, H., Sugawara, I., Kitami, A., and Hayashi, M. Vitronectin in the cytoplasm of Leydig cells in the rat testis. Biol. Reprod., 54, 29-35 (1996).
      75. Sawada, H., and Esaki, H: Use of Nanogold followed by silver enhancement and gold toning for preembedding immunolocalization. J. Elect. Micro., 43, 361-66 (1994).
      76. Shigemoto, R., Kulik, A., Roberts, J. D. B., Ohishi, H., Nusser, Z., Kaneko, T., and Somogyi, P.; Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature, 381, 523-525 (1996).
      77. Somogyi, P.; Tamas, G.; Lujan, R., and Buhl, E. H.: Salient features of synaptic organization in the cerebral cortex. Brain Res., Brain Res. Rev., 26 113-135 (1999).
      78. Soussan, L.; Burakov, M.; Daniels, M. P.; Toister-Achituv, M.; Porat, A.; Yarden, Y., and Elazar, Z.: ERG30, a VAP-33-related protein, functions in protein transport mediated by COPI vesicles. J. Cell Biol., 146, 301-311 (1999).
      79. Sun, X.J., Tolbert, L.P. and Hildebrand, J.G. Using laser scanning confocal microscopy as a guide for electron microscopic study: a simple method for correlation of light and electron microscopy. J. Histochem. Cytochem., 43, 329-35 (1995).
      80. Suzuki, E., and Hirosawa, K. Immunolocalization of a Drosphila phosphatidylinositol transfer protein (rdgB) in normal and rdgA mutant photoreceptor cells with special reference to the subrhabdomeric cisternae. J. Electron Microsc., 43, 183-189 (1994).
      81. Suzuki, Y.; Itakura, M.; Kashiwagi, M.; Nakamura, N.; Matsuki, T.; Sakuta, H.; Naito, N.; Takano, K.; Fujita, T., and Hirose, S.: Identification by differential display of a hypertonicity-inducible inward rectifier potassium channel highly expressed in chloride cells. J. Biol. Chem,274, 11376-11382 (1999).
      82. Takizawa, T.: High-resolution Immunocytochemical Labeling of Replicas with Ultrasmall Gold. J. Histochem. Cytochem., 47, 569-573 (1999).
      83. Takizawa, T. and Robinson, J.M. Use of 1.4-nm immunogold particles for immunocytochemistry on ultra-thin cryo- sections. J. Histochem. Cytochem., 42, 1615-1623 (1994).
      84. Tanner, V. A., Ploug, T., and Tao-Cheng, J.-H. Subcellular localization of SV2 and other secretory vesicle components in PC12 cells by an efficient method of preembedding EM Immunocytochemistry for cell cultures. J. Histochem. Cytochem., 44, 1481-1488 (1996).
      85. Tao-Cheng, J.-H. and Tanner, V.A. A modified method of pre-embedding EM immunocytochemistry which improves specificity and simplifies the process for in vitro cells. In G. Bailey and A.J. Garratt-Reed (Eds.), Proc. 52nd Ann. Mtg. Micros. Soc. Amer.; (pp. 306-307). San Francisco Press (1994).
      86. Thompson, W. F., Beven, A. F., Wells, B., and Shaw, P. J. Sites of rDNA transcription genes are widely dispersed through the nucleolus in Pisum sativum and can comprise single genes. Plant J., 12, 571-581 (1997).
      87. Vandre, D.D. and Burry, R.W. Immunoelectron microscopic localization of phosphoproteins associated with the mitotic spindle. J. Histochem.Cytochem., 40, 1837-1847 (1992).
      88. Yazama, F., Esaki, M., and Sawada, H.: Immunocytochemistry of Extracellular Matric Components in the Rat Seminiferous Tubule: Electron Microscopic Localization with Improved Methodology. Anat. Rec., 248, 51-62 (1997).
      89. Yoshida, M.;Wakatsuki, Y.; Kobayashi, Y.; Itoh, T.; Murakami, K.; Mizoguchi, A.; Usui, T.; Chiba, T., and Kita, T.; Cloning and Characterization of a Novel Membrane-Associated Antigenic Protein of Helicobacter pylori. Infection and Immunity, 67, 286-293 (1999).
      90. Immunogold-Silver Staining: Principles, Methods and Applications," M. A. Hayat (Ed.); CRC Press, Boca Raton, FL, 1995. See chapters by: Burry, R. W.; Hainfeld, J. F., and Furuya, F. R. (pp. 71-96); and Hacker, G.

      Nanogold® Streptavidin

      1. Bendayan, M.: Worth its weight in gold. Science, 291, 1363-5 (2001).
      2. Graf, A. H.; Cheung, A. L.; Hauser-Kornberger, C.; Dandachi, N.; Tubbs, R. R.; Dietze, O., and Hacker, G. W.: Clinical relevance of HPV 16/18 testing methods in cervical squamous cell carcinoma. Appl. Immunohistochem. Molecul. Morphol., 8, 300-9 (2000).
      3. Tubbs, R.; Pettay, J.; Skacel, M.; Powell, R.; Stoler, M.; Roche, P., and Hainfeld, J.: Gold-Facilitated in Situ Hybridization: A Bright-Field Autometallographic Alternative to Fluorescence in Situ Hybridization for Detection of HER-2/neu Gene Amplification. Am. J. Pathol., 160, 1589-1595 (2002).
      1. Weipoltshammer, K.; Schéfer, C.; Almeder, M., and Wachtler, F.: Signal enhancement at the electron microscopic level using Nanogold and gold-based autometallography. Histochem. Cell Biol., 114, 489-495 (2000).
      2. Cheung, A. L.; Graf, A. H.; Hauser-Kronberger, C.; Dietze, O.; Tubbs, R. R., and Hacker, G. W.: Detection of human papillomavirus in cervical carcinoma: comparison or peroxidase, Nanogold, and catalyzed reporter deposition (CARD)-Nanogold in situ hybridization Mod. Pathol., 12, 689 (1999).
      3. Hacker, G. W., and Danscher, G.: Recent Advances in Immunogold-Silver Staining-Autometallography; Cell Vision 1, 102 (1994).
      4. Hacker, G. W., Hauser-Kronberger, C., Zehbe, I., Su, H., Schiechl, A., Dietze, O., and Tubbs, R.: In Situ localization of DNA and RNA sequences: Super-sensitive In Situ hybridization using Streptavidin-Nanogold-Silver Staining: Minireview, Protocols and Possible Applications. Cell Vision, 4, 54-65 (1997).
      5. Hacker, G. W.; Hauser-Kronberger, C.; Zehbe, I.; Su, H., and Tubbs, R.: New advances in super-sensitive DNA-, RNA- and antigen detection: Combination of labeled tyramides with Nanogold-silver staining (NGSS). Proc. 56th Ann. Mtg., Micros. Soc. Amer.; Bailey, G. W.; Alexander, K. B.; Jerome, W. G.; Bond, M. G., and McCarthy, J. J., Eds.; Springer, New York, NY, 1998, 996-997.
      6. Hacker, G. W.; Zehbe, I.; Hainfeld, J.; S?llstr?m, J.; Hauser-Kronberger, C.; Graf, A.-H.; Su, H.; Dietze, O., and Bagasra, O; High-Performance Nanogold® In Situ Hybridization and In Situ PCR. Cell Vision, 3, 209 (1996).
      7. Hacker, G. W., Zehbe, I., Hainfeld, J., Graf, A.-H., Hauser-Kronberger, C., Schiechl, A., Su, H., and Dietze, O.: High performance Nanogold®-in situ hybridization and its use in the detection of hybridized and PCR-amplified microscopical preparations; In Proc 54th Ann. Mtg. Micros. Soc. Amer., G. W. Bailey, J. M. Corbett, R. V. W. Dimlich, J. R. Michael and N. J., Zaluzec (Eds.). San Francisco Press, San Francisco, CA, pp. 896-897 (1996).
      8. Hauser-Kronberger, C.: Highly sensitive DNA, RNA and antigen detection methods. Streptavidin-Nanogold-silver staining. Cell Vision, 5, 83 (1998).
      9. Sch?fer, C.; Weipoltshammer, K.; Hauser-Kronberger, C., and Wachtler, F.: High-resolution detection of nucleic acids at the electron microscope level - Review of in situ hybridization technology, the use of gold, and Catalyzed Reporter Deposition (CARD). Cell Vision, 4, 443-454 (1997).
      10. Tbakhi, A.; Totos, G.; Hauser-Kronberger, C.; Pettay, J.; Baunoch, D.; Hacker, G. W., and Tubbs, R. R.: Fixation conditions for DNA and RNA in situ hybridization: a reassessment of molecular morphology dogma. Am. J. Pathol., 152, 35-41 (1998).
      11. Totos, G.; Tbakhi, A.; Hauser-Kronberger, C., and Tubbs, R. R.: Catalyzed Reporter Deposition: A new era in molecular and immunomorphology - Nanogold-silver staining and colorimetric detection and protocols. Cell Vision, 4, 433-442 (1997).
      12. Woldin, C. N.; Hing, F. S.; Lee, J.; Pilch, P. F., and Shipley, G. G.: Structural studies of the detergent-solubilized and vesicle-reconstituted insulin receptor J. Biol. Chem, 274, 34981-34992 (1999).
      13. Zehbe, I., Hacker, G.W., Su, H., Hauser-Kronberger, C., Hainfeld, J.F., and Tubbs, R.: Sensitive in situ hybridization with catalyzed reporter deposition, streptavidin-Nanogold, and silver acetate autometallography. Detection of single-copy human papillomavirus. Am. J. Pathol. 150, 1553-1561 (1997).


荧光纳米金 连接了Fab’的荧光纳米金 
      Alexa Fluor® 488 荧光纳米金结合物: 

      品名

      产品描述

      货号

      规格

      兔抗山羊IgG Alexa Fluor® 488 荧光纳米金

      1.4nm, 连接了Alexa Fluor® 488的亲和纯化的Fab’

      7206

      0.5ml

      1ml

      山羊抗豚鼠IgG Alexa Fluor® 488 荧光纳米金

      1.4nm, 连接了Alexa Fluor® 488的亲和纯化的Fab’

      7255

      0.5ml

      1ml

      山羊抗人IgG Alexa Fluor® 488 荧光纳米金

      1.4nm, 连接了Alexa Fluor® 488的亲和纯化的Fab’

      7253

      0.5ml

      1ml

      山羊抗小鼠IgG Alexa Fluor® 488 荧光纳米金

      1.4nm, 连接了Alexa Fluor® 488的亲和纯化的Fab’

      7202

      0.5ml

      1ml

      山羊抗兔IgG Alexa Fluor® 488 荧光纳米金

      1.4nm, 连接了Alexa Fluor® 488的亲和纯化的Fab’

      7204

      0.5ml

      1ml

      山羊抗大鼠IgG Alexa Fluor® 488 荧光纳米金

      1.4nm, 连接了Alexa Fluor® 488的亲和纯化的Fab’

      7208

      0.5ml

      1ml

      兔抗绵羊IgG Alexa Fluor® 488 荧光纳米金

      1.4nm, 连接了Alexa Fluor® 488的亲和纯化的Fab’

      7251

      0.5ml

      1ml

      链酶亲和素Alexa Fluor® 488 荧光纳米金

      1.4nm, 连接了Alexa Fluor® 488的亲和纯化的Fab’

      7216

      0.5ml

      1ml

       

       

       

       

       

       

       

       


      Alexa Fluor®* 546荧光纳米金结合物:

      品名

      产品描述

      货号

      规格

      山羊抗豚鼠IgG Alexa Fluor®* 546荧光纳米金

      1.4nm, 连接了Alexa Fluor® 546的亲和纯化的Fab’

      7455

      0.5ml

      1ml

      山羊抗小鼠IgG Alexa Fluor®* 546荧光纳米金

      1.4nm, 连接了Alexa Fluor® 546的亲和纯化的Fab’

      7402

      0.5ml

      1ml

      山羊抗兔IgG Alexa Fluor®* 546荧光纳米金

      1.4nm, 连接了Alexa Fluor® 546的亲和纯化的Fab’

      7404

      0.5ml

      1ml

      链酶亲和素Alexa Fluor®* 546荧光纳米金

      1.4nm, 连接了Alexa Fluor® 546的亲和纯化的Fab’

      7416

      0.5ml

      1ml


      Alexa Fluor® 594荧光纳米金结合物:

      品名

      产品描述

      货号

      规格

      山羊抗豚鼠IgG Alexa Fluor® 594荧光纳米金

      1.4nm, 连接了结合Alexa Fluor® 594的亲和纯化的Fab’

      7355

      0.5ml

      1ml

      山羊抗小鼠IgG Alexa Fluor® 594荧光纳米金

      1.4nm, 连接了结合Alexa Fluor® 594的亲和纯化的Fab’

      7302

      0.5ml

      1ml

      山羊抗兔IgG Alexa Fluor® 594荧光纳米金

      1.4nm, 连接了结合Alexa Fluor® 594的亲和纯化的Fab’

      7304

      0.5ml

      1ml

      链酶亲和素Alexa Fluor®* 594荧光纳米金

      1.4nm, 连接了结合Alexa Fluor® 594的亲和纯化的Fab’

      7316

      0.5ml

      1ml

      References:
      Fluorescein FluoroNanogold Conjugates

        •  Powell, R. D., and Hainfeld, J. F.: Combined Fluorescent and Gold Probes for Microscopic and Morphological Investigations. InGold and Silver Staining: Techniques in Molecular Morphology, (G. W. Hacker and J. Gu, Eds.), CRC Press, Boca Raton, FL; pp. 107-118 (2002).
        • Robinson, J. M.; Takizawa, T., and Vandré, D. D.: Applications of gold cluster compounds in immunocytochemistry and correlative microscopy: comparison with colloidal gold. J. Microsc., 199, 163-79 (2000).
        • Robinson, J. M.; Takizawa, T., and Vandré: Enhanced immunolabeling efficiency using ultrasmall immunogold probes: Immunocytochemistry J. Histochem. Cytochem., 48, 487-492 (2000).
        • Takeuchi, S.; Takagishi, Y.; Yasui, K.; Murata, Y.; Toyama, J., and Kodama, I.: Voltage-gated K(+)Channel, kv4.2, localizes predominantly to the transverse-axial tubular system of the rat myocyte J. Mol. Cell.Cardiol., 32, 1361-1369 (2000).
        • Takizawa, T., and Robinson, J. M.: Analysis of antiphotobleaching reagents for use with FluoroNanogold in correlative microscopy J. Histochem. Cytochem., 48, 433-436 (2000).
        • Takizawa, T., and Robinson, J. M.: FluoroNanogold is a bifunctional immunoprobe for correlative fluorescence and electron microscopyJ. Histochem. Cytochem., 48, 481-485 (2000).

        Fluorescein FluoroNanogold Conjugates

        1. Humbel, B. M.; De Jong, M. D. M.; Müller, W. H., and Verkleij, A. J.: Pre-embedding immunolabeling for electron microscopy: An evaluation of permeabilization methods and markers. Microsc. Res. Tech., 42, 43-58 (1998).
        2. Powell, R. D.; Halsey, C. M. R.; Gutierrez, E.; Hainfeld, J. F., and Furuya, F. R.: Dual-labeled probes for fluorescence and electron microscopy. Proc. 56th Ann. Mtg., Micros. Soc. Amer.; Bailey, G. W.; Alexander, K. B.; Jerome, W. G.; Bond, M. G., and McCarthy, J. J., Eds.; Springer, New York, NY, 1998, 992-993.
        3. Powell, R. D.; Halsey, C. M. R., and Hainfeld, J. F.: Combined fluorescent and gold immunoprobes: Reagents and methods for correlative light and electron microscopy. Microsc. Res. Tech., 42, 2-12 (1998).
        4. Powell, R. D.; Halsey, C. M. R.; Spector, D. L.; Kaurin, S. L.; McCann, J.;, and Hainfeld, J. F. A covalent fluorescent-gold immunoprobe: "simultaneous" detection of a pre-mRNA splicing factor by light and electron microscopy. J. Histochem. Cytochem., 45, 947-956 (1997).
        5. Powell, R. D.; Hainfeld, J. F.; Halsey, C. M. R.; Spector, D. L.; Kaurin, S.; McCann, J.; Craig, R.; Fay, F. S., and McNamara, K. E.: Large cluster and combined fluorescent and gold immunoprobes. In Proc 54th Ann. Mtg. Micros. Soc. Amer., G. W. Bailey, J. M. Corbett, R. V. W. Dimlich, J. R. Michael and N. J., Zaluzec (Eds.). San Francisco Press, San Francisco, CA, pp. 892-893 (1996).
        6. Powell, R.D., Hainfeld, J.F., Churchill, M.E.A., and Belmont, A.S.I. Combined fluorescent and gold nucleic acid probes. In G. Bailey and A.J. Garratt-Reed (Eds.). Proc 52nd Ann. Mtg. Micros. Soc. Amer., San Francisco Press, pp.176-177 (1994).
        7. Robinson, J. M.: FluoroNanogold: an efficient labeling reagent for immunocytochemistry. Proc. 56th Ann. Mtg., Micros. Soc. Amer.; Bailey, G. W.; Alexander, K. B.; Jerome, W. G.; Bond, M. G., and McCarthy, J. J., Eds.; Springer, New York, NY, 1998, 990-991.
        8. Robinson, J. M.; Takizawa, T.: Biological labeling and correlative microscopy; Proc. 57th Ann. Mtg., Micros. Soc. Amer.; G. W. Bailey, W. G. Jerome, S. McKernan, J. F. Mansfield, and R. L. Price (Eds.); Springer-Verlag, New York, NY; 1999, 474-475.
        9. Robinson, J. M.; Takizawa, T.; Vandré, D. D., and Burry, R. W.: Ultrasmall immunogold particles: important probes for immunocytochemistry; Microsc. Res. Tech., 42, 13-23 (1998).
        10. Robinson, J. M., and Vandré, D. D. Efficient immunocytochemical labeling of leukocyte microtubules with FluoroNanogold: An important tool for correlative microscopy. J. Histochem. Cytochem., 45, 631-642 (1997).
        11. Takizawa, T., and Robinson, J. M.: FluoroNanogold as a probe for high resolution correlation between immunofluorescence and electron microscopy; Proc. 57th Ann. Mtg., Micros. Soc. Amer.; G. W. Bailey, W. G. Jerome, S. McKernan, J. F. Mansfield, and R. L. Price (Eds.); Springer-Verlag, New York, NY; 1999, 476-477.
        12. Takizawa, T.; Suzuki, K., and Robinson, J. M.: Correlative Microscopy Using FluoroNanogold on Ultrathin Cryosections: Proof of Principle;J. Histochem. Cytochem., 46, 1097-1102 (1998).

        A prototype was used in the following publication:
        Huang, S.; Deerinck, T. J.; Ellisman, M. H., and Spector, D. L.: In vivo analysis of the stability and transport of nuclear poly(A)+ RNA; J. Cell. Biol., 126, 877-899 (1994).
        Cy3®-FluoroNanogold Conjugates

          • Keohane, E. M.; Orr, G. A.;Takvorian, P. M.;Cali, A.; Tanowitz, H. B.; Wittner, M., and Weiss, L. M.: Polar tube proteins of Microsporida of the family Encephalitozoonidae; J. Euk. Microbiol., 46, 1-5 (1999).
          •  Powell, R. D., and Hainfeld, J. F.: Combined Fluorescent and Gold Probes for Microscopic and Morphological Investigations. InGold and Silver Staining: Techniques in Molecular Morphology, (G. W. Hacker and J. Gu, Eds.), CRC Press, Boca Raton, FL; pp. 107-118 (2002).
          • Powell, R. D.; Halsey, C. M. R., and Hainfeld, J. F.: Combined fluorescent and gold immunoprobes: Reagents and methods for correlative light and electron microscopy. Microsc. Res. Tech., 42, 2-12 (1998).
          • Powell, R. D.; Joshi, V. N.; Halsey, C. M. R.; Hainfeld, J. F.; Hacker, G. W.; Hauser-Kronberger, C.; Muss, W. H., and Takvorian, P. M.: Combined Cy3 / Nanogold conjugates for immunocytochemistry and in situ hybridization; Proc. 57th Ann. Mtg., Micros. Soc. Amer.; G. W. Bailey, W. G. Jerome, S. McKernan, J. F. Mansfield, and R. L. Price (Eds.); Springer-Verlag, New York, NY; 1999, 478-479.

            连接了脂类的纳米金:

          品名

          产品描述

          货号

          规格

          Palmitoyl Nanogold®

          共价结合C15棕榈酸的1.4nm纳米金颗粒

          4020

          30 nmol

          DPPE Nanogold®

          共价结合二棕榈酰磷酯酰乙醇胺的1.4nm纳米金颗粒

          4021

          30 nmol

          Palmitoyl Undecagold

          共价结合C15棕榈酸的0.8nm纳米金颗粒

          4022

          30 nmol

          DPPE Undecagold

          共价结合二棕榈酰磷酯酰乙醇胺的0.8nm纳米金颗粒

          4023

          30 nmol

          References:

            • Adler-Moore, J.: AmBisome targeting to fungal infections. Bone Marrow Transplantation, 14, S3-S7 (1994).
            • Hainfeld, J. F.; Furuya, F. R., and Powell, R. D.: Metallosomes. J. Struct. Biol., 127, 152-160 (1999).
            • Hainfeld, J. F.: Gold Liposomes. In Proc 54th Ann. Mtg. Micros. Soc. Amer., G. W. Bailey, J. M. Corbett, R. V. W. Dimlich, J. R. Michael and N. J., Zaluzec (Eds.). San Francisco Press, San Francisco, CA, pp. 898-899 (1996).
            • Hainfeld, J. F., and Powell, R. D.: New frontiers in gold labeling J. Histochem. Cytochem., 48, 471-480 (2000).
            • Thurston, G., McLean, J. W., Rizen, M., Baluk, P., Haskell, A., Murphy, T. J., Hanahan, D., and McDonald, D. M.: Cationic liposomes target endothelial cells in tumors and chronic infalmmation in mice. J. Clin. Invest., 101, 1401-1413 (1998).

              带不同反应基的纳米金颗粒:

        品名

        产品描述

        货号

        规格

        Monomaleimido Nanogold®(MMN)

        用于标记巯基,可标记Fab’、抗体、含半胱氨酸的蛋白质或其他含氢巯基的复合物, 1.4 nm

        2020

        30 nmol

        Monoamino Nanogold®

        1.4nm, 标记糖蛋白的碳水化合物部分或其他应用。

        2021

        30 nmol

        Mono-Sulfo-NHS-Nanogold®

        14nm,标记伯胺

        2025

        30 nmol

        Positively Charged Nanogold®

        1.4nm,带正电,含多个胺,用于结合带负电的位点,或其他偶联方案。

        2022

        30 nmol

        Negatively Charged Nanogold®

        1.4nm,带负电,含多个胺,用于结合带正电的位点,或其他偶联方案。

        2023

        30 nmol

        Nanogold® Particles, Non- Functionalized

        1.4nm金颗粒,冻干粉,非活性形式

        2010

        30 nmol

        References:

        Positively Charged Nanogold®

        1. Seron, K., Tieaho, V., Prescianotto-Baschong, C., Aust, T., Blondel, M. O., Guillard, P., Devilliers, G., Rossanese, O. W., Glick, B. S., Riezman, H., Keranen, S., and Haguenauer-Tapis, R.: A yeast t-SNARE involved in endocytosis; Mol. Biol. Cell, 9, 2873 (1998).
        1. Prescianotto-Baschong, C., and Riezman, H.: Morphology of the yeast endocytic pathway. Mol. Cell Biol., 9, 173-189 (1998).

        Negatively Charged Nanogold®

        1.  Akaki, M.; Nagayasu, E.; Nakano, Y., and Aikawa, M.: Surface charge of Plasmodium falciparum merozoites as revealed by atomic force microscopy with surface potential spectroscopy. Parasitol. Res., 88, 16-20 (2002).

        Recent References: Monomaleimido-Nanogold®

          • Ackerly, C. A.; Tilups, A., and Becker, L. E.: Strategies insuring the optimal use of IgG or Fab’ fragments covalently bound to 1.4 nm Nanogold® in immunogold labeling procedures. Proc. 56th Ann. Mtg., Micros. Soc. Amer.; Bailey, G. W.; Alexander, K. B.; Jerome, W. G.; Bond, M. G., and McCarthy, J. J., Eds.; Springer, New York, NY, 1998, 988-989.
          • Hainfeld, J. F., and Powell, R. D.: New frontiers in gold labeling J. Histochem. Cytochem., 48, 471-480 (2000).
          • Jeon, H., and Shipley, G. G. Localization of the N-Terminal Domain of the Low Density Lipoprotein Receptor. J. Biol. Chem.,275, 30465-30470 (2000).
          • Jeon, H., and Shipley, G. G. Vesicle-Reconstituted Low Density Lipoprotein Receptor: Visualization by Cryoelectron Microscopy. J. Biol. Chem., 275, 30458-30464 (2000).
          •  Mahdi, F.; Madar, Z. S.; Figueroa, C. D., and Schmaier, A. H.: Factor XII interacts with the multiprotein assembly of urokinase plasminogen activator receptor, gC1qR, and cytokeratin 1 on endothelial cell membranes. Blood, 99, 3585-3596 (2002).
          • Malecki, M.; Hsu, A.; Truong, L., and Sanchez, S: Molecular immunolabeling with recombinant single-chain variable fragment (scFv) antibodies designed with metal-binding domains; Proc. Natl. Acad. Sci. USA, 99, 213-218 (2002).
          • Medalia, O.; Heim, M.; Guckenberger, R.; Sperling, R., and Sperling, J.: Gold-tagged RNA-A probe for macromolecular assemblies. J. Struct. Biol., 127, 113-119 (1999).
          • Montesano-Roditis, L.; Glitz, D. G.; Traut, R. R., and Stewart, P. L.: Cryo-electron microscopic localization of protein L7/L12 within the Escherichia coli 70S ribosome by difference mapping and Nanogold labeling. J. Biol. Chem., e-publication ahead of print.
          • Qualmann, B.; Kessels, M. M.; Thole, H. H., and Sierralta, W. D.; A hormone pulse induces transient changes in the subcellular distribution and leads to a lysosomal accumulation of the estradiol receptor alpha in target tissues. Eur. J. Cell Biol., 79, 383-93 (2000).
          • Robinson, J. M.; Takizawa, T.; Vandré, D. D., and Burry, R. W.: Ultrasmall immunogold particles: important probes for immunocytochemistry; Microsc. Res. Tech., 42, 13-23 (1998).
          • Scheibel, T.; Kowal, A. S.; Bloom, J. D., and Lindquist, S.L.: Bidirectional amyloid fiber growth for a yeast prion determinant. Current Biology, 11, 366-369 (2001).
          • Schwartz, M. P., and Matouschek, A.: The dimensions of the protein import channels in the outer and inner mitochondrial membranes.Proc. Natl. Acad. Sci. USA, 96, 13086-13090 (1999).
          •  Tolstonog, G. V.; Sabasch, M., and Traub, P.: Cytoplasmic Intermediate Filaments Are Stably Associated with Nuclear Matrices and Potentially Modulate Their DNA-Binding Function. DNA Cell Biol., 21, 213-39 (2002).
          • Traxler, K. W.; Norcum, M. T.; Hainfeld, J. F., and Carlson, G. M.: Direct Visualization of the Calmodulin Subunit of Phosphorylase Kinase via Electron Microscopy Following Subunit Exchange. J. Struct. Biol., 135, 231-8 (2001).
          • Woldin, C. N.; Hing, F. S.; Lee, J.; Pilch, P. F., and Shipley, G. G.: Structural studies of the detergent-solubilized and vesicle-reconstituted insulin receptor J. Biol. Chem, 274, 34981-34992 (1999).

          Monomaleimido-Nanogold®

          1. Alivisatos, A. P., Johnsson, K. P., Peng, X., Wilson, T. E., Loweth, C. J., Bruchez, M. P., Jr., and Schultz, P. G.: Organization of ’Nanocrystal Molecules’ using DNA. Nature, 382, 609 (1996).
          2. Boisset, N., Penczek, P., Pochon, F., Frank, J., and Lamy, J. Three-dimensional reconstruction of human alpha 2-macroglbulin and refinement of the localization of thiol ester bonds with monomaleimido Nanogold;. Ann. NY Acad. Sci., 737, 229-44 (1994).
          3. Boisset, N., Grassucci, R., Penczek, P., Delain, E., Pochon, F., Frank, J., and Lamy, J.N. Three-dimensional reconstruction of a complex of human alpha-2-macroglobulin with monomaleimido Nanogold; (Au1.4nm) embedded in ice. J. Struct. Biol., 109;39-45 (1992).
          4. Gregori, L., Hainfeld, J. F., Simon, M. N., and Goldgaber, D. Binding of amyloid beta protein to the 20S proteasome. J. Biol. Chem., 272, 58-62 (1997).
          5. Hainfeld, J. F.: Labeling with Nanogold and undecagold: techniques and results. Scanning Microsc. Suppl. (Proc. 14th Pfefferkorn Conf.); Malecki, M., and Roomans, G. M. (Eds.). Scanning Microscopy International, Chicago, IL, 10, 309-322 (1996).
          6. Hainfeld, J. F., and Powell, R. D.: Nanogold Technology: New Frontiers in Gold Labeling. Cell Vision, 4, 408-432 (1997).
          7. Lin, M., Sistina, Y., and Rodger, J. C.: Electron-microscopic localisation of thiol and disulphide groups by direct monomaleimido-nanogold labeling in the spermatozoa of a marsupial, the tammar wallaby (Macropus eugenii); Cell Tisue Res., 282, 291-296 (1995).
          8. Malecki, M.: Energy filtering transmission electron microscopy of transfected DNA; In Proc 54th Ann. Mtg. Micros. Soc. Amer., G. W. Bailey, J. M. Corbett, R. V. W. Dimlich, J. R. Michael and N. J., Zaluzec (Eds.). San Francisco Press, San Francisco, CA, pp. 924-925 (1996).
          9. Rayner, S. L., and Stephenson, F. A. Labelling and characterization of gamma-aminobutyric acidA receptor subunit-specific antibodies with monomaleimido-Nanogold. Biochem. Soc. Trans., 25, 546S (1997).
          10. Spin, J. M., and Atkinson, D.: Cryoelectron microscopy of low density lipoprotein in vitreous ice. Biophys. J., 68, 2115-2123 (1995).
          11. Wagenknecht, T,; Berkowitz, J.; Grassucci, R.; Timerman, A. P., and Fleischer, S.: Localization of calmodulin s on the ryanodine receptor from skeletal muscle by electron microscopy. Biophys. J., 67, 2286-2295 (1994).
          12. Wenzel, T., and Baumeister, W.: Conformational restraints in protein degradation by the 20S proteasome. Nature Struct. Biol., 2, 199-204 (1995).
          13. Wilkens, S. and Capaldi, R.A. Monomaleimidogold Labeling of the g subunit of the E. coli F1 ATPase examined by cryoelectron Microscopy. Arch Biochem. Biophys., 229, 105-109 (1992).
          14. Yanase, K.; Smith, R. M.; Cizman, B.; Foster, M. H.; Peachey, L. D.; Jarrett, L., and Madaio, M. P.: A subgroup of Murine monoclonal anti-deoxyribonucleic acid antibodies traverse the cytoplasm and enter the nucleus in a time- and temperature- dependent manner;Laboratory Investigation, 71, 52-60 (1994).
          15. Yang, Y. S.; Datta, A.; Hainfeld, J. F.; Furuya, F. R.; Wall, J. S., and Frey, P. A.: Mapping the lipoyl groups of the pyruvate dehydrogenase complex by use of gold cluster labels and scanning transmission electron microscopy. Biochemistry, 16;33(32), 9428-9437 (1994).

          Mono-Sulfo-NHS-Nanogold®

          1. Hainfeld, J. F.: Labeling with Nanogold and undecagold: techniques and results. Scanning Microsc. Suppl. (Proc. 14th Pfefferkorn Conf.); Malecki, M., and Roomans, G. M. (Eds.). Scanning Microscopy International, Chicago, IL, 10, 309-322 (1996).
          2. Hainfeld, J. F., and Powell, R. D.: New frontiers in gold labeling J. Histochem. Cytochem., 48, 471-480 (2000).
          3. Hainfeld, J. F., and Powell, R. D.: Nanogold Technology: New Frontiers in Gold Labeling. Cell Vision, 4, 408-432 (1997).
          4. Hamad-Schifferli, K.; Schwartz, J. J.; Santos, A. T.; Zhang, S., and Jacobson, J. M.: Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature, 2002, 415, 152-155.
          5. Luo, R. Z.-T.; Beniac, D. R.; Fernandes, A.; Yip, C. C., and Ottensmeyer, F. P.: Quaternary structure of the insulin-insulin receptor complex. Science, 285, 1077-1080 (1999).
          6. Ottensmeyer, F. P.; Luo, R. Z.-T.; Fernandes, A. B.; Beniac, D., and Yip, C. C.: Insulin receptor: 3D reconstruction from darkfield STEM images, structural interpretation and functional model; Proc. 57th Ann. Mtg., Micros. Soc. Amer.; G. W. Bailey, W. G. Jerome, S. McKernan, J. F. Mansfield, and R. L. Price (Eds.); Springer-Verlag, New York, NY; 1999, 408-409.
          7. Segond von Banchet, G., Schindler, M., Hervieu, G. J.; Beckmann, B., Emson, P. C., and Heppelmann, B.: Distribution of somatostain receptor subtypes in rat lumbar spinal cord examined with gold-labelled somatostatin and anti-receptor antibodies; Brain Res., 816, 254 (1999).
          8. Ribrioux, S., Kleymann, G., Haase, W., Heitmann, K., Ostermeier, C., and Michel, H. Use of Nanogold- and Fluorescent-labeled Antibody Fv Fragments in Immunocytochemistry. J. Histochem. Cytochem., 44, 207-213 (1996).
          9. Segond von Banchet, G., and Heppelman, B.: Non-radioactive localization of substance P s in rat brain and spinal cord using peptides labeled with 1.4 nm gold particles; J. Histochem. Cytochem., 43, 821 (1995).

          Monoamino-Nanogold®

          1. Wille, H.; Michelitsch, M. D.; Guenebaut, V.; Supattapone, S.; Serban, A.; Cohen, F. E.; Agard, D. A, and Prusiner, S. B.: Structural studies of the scrapie prion protein by electron crystallography. Proc. Natl. Acad. Sci. USA, 99, 3563-8 (2002).
          2. Shah, N., Zhang, S., Harada, S., Smith, R. M., and Jarrett, L.: Electron microscopic visualization of insulin translocation into the cytoplasm and nuclei of intact H35 hepatoma cells using covalently linked Nanogold-insulin. Endocrinology, 136, 2825-2835 (1995).

          Other Nanogold® Reagents 
          Nanogold® Nitrilotriacetic acid-Ni(II)

          1. Hainfeld, J. F.; Liu, W.; Halsey, C. M. R.; Freimuth, P., and Powell, R. D.: Ni-NTA-Gold Clusters Target His-Tagged Proteins. J. Struct. Biol., 127, 185-198 (1999).
          2. Hainfeld, J. F.; Powell, R. D.; Halsey, C. M. R., and Freimuth, P.: Ni-NTA-Nanogold for binding His tags. Proc. XIV Int. Congress on Electron Microscopy, Calderon Benevides, H. A., and Jose Yacaman, M. (Eds.); Institute of Physics Publishing, Bristol, UK, 1998, p. 859.

          Nanogold® Enzyme Substrates

            • Mayer, G.; Leone. R. D.; Hainfeld, J. F., and Bendayan, M.: Introduction of a novel HRP substrate-Nanogold probe for signal amplification in immunocytochemistry J. Histochem. Cytochem., 48, 461-469 (2000).

              Undecagold (Au11)比纳米金小,直径仅0.8nm。适用于超高分辨率电镜(如扫描透射电镜)或透射电镜与图像处理结合的技术。单个聚合物在TEM下通常不能被直接观测到,染色更慢,与纳米金相比,银沉积的量更少。因此在很多应用中,建议选用纳米金而非Undecagold。

              品名

              货号

              规格

              Monomaleimido Undecagold

              2030

              50 nmol

              Monoamino Undecagold

              2031

              50 nmol

              Mono-Sulfo-NHS-Undecagold

              2045

              50 nmol

              Positively Charged Undecagold

              2043

              50 nmol

              Negatively Charged Undecagold

              2044

              50 nmol

              Undecagold Particles, Non- Functionalized

              2060

              50 nmoles

              References: 
              Undecagold: Recent New References

              1. Frey, P. A., and Frey, T. G.: Synthesis of undecagold labeling compounds and their applications in electron microscopic analysis of multiprotein complexes. J. Struct. Biol., 127, 94-100 (1999).
              2. Hainfeld, J. F.; Liu, W., and Barcena, M.: Gold-ATP. J. Struct. Biol., 127, 120-134 (1999).
              3. Jahn, W.: Chemical aspects of the use of gold clusters in structural biology. J. Struct. Biol., 127, 106-112 (1999).
              4. Mosseson, M. W., Siebenlist, K. R., Meh, D. A., Wall, J. S., and Hainfeld, J. F. The location of the carboxy-terminal region of gamma chains in fibrinogen and fibrin D domains. Proc. Natl. Acad.Sci. USA, 95, 10511-10516 (1998).
              5. Safer, D.: Undecagold cluster labeling of proteins at reactive cysteine residues. J. Struct. Biol., 127, 101-105 (1999).
              6.  Schwartz, M. P., and Matouschek, A.: The dimensions of the protein import channels in the outer and inner mitochondrial membranes. Proc. Natl. Acad. Sci. USA, 96, 13086-13090 (1999).
              7. Steinmetz, M. O., Stoffler, D., Muller, S. A., Jahn, W., Wolpensinger, B., Goldie, K. N., Engel, A., Faulstich, H., and Aebi, U.: Evaluating atomic models of F-actin with an undecagold-tagged phalloidin derivative; J. Mol. Biol., 276, 1 (1998).

              Other Publications

                • Bartels, H., Bennett, W. S., Hansen, H. A., Eisenstein, M., and Weinstein S. Mussig, J., Volkmann, N., Schlunzen, F., Agmon, I., and Franceschi, F., et al: The suitability of a monofunctional reagent of an undecagold cluster for phasing data collected from the large ribosomal subunits from Bacillus stearothermophilus [Review]; Biopolymers, 37, 411-419 (1995).
                • Bartlett, P.A., Bauer, B., and Singer, S.J. Synthesis of water-soluble undecagold cluster compounds of potential importance in electron microscopic and other studies of biological systems; J. Am. Chem. Soc., 100, 5085 (1978).
                • Blechschmidt, B., Jahn, W. Hainfeld, J.F., Sprinzl, M., and Boublik, M. Visualization of a ternary complex of the Escherichia coli Phe-tRNA(Phe) andTu.-GTP from Thermus thermophilus by scanning transmission electron microscopy. J. Struct. Biol., 110, 84-89 (1993).
                • Blechschmidt, B., Shirokov, V., and Sprinzl M. Undecagold cluster modified tRNA (Phe) from Escherichia coli and its activity in the protein elongation cycle. J. Biochem., 219, 65-71 (1994).
                • Crum, J., Gruys, K.J., and Frey, T.G. Undecagold labeling of cytochrom cooxidase dimer crystals. In Bailey, G.W. and Hall, E.L., eds. Proc. 49th Ann. Meeting Elec. Micros. Soc. Amer., San Francisco Press, 278-279 (1991).
                • Crum, J., Gruys, K.J., and Frey, T.G. Electron microscopy of cytochrome c oxidase crystals: labeling of subunit III with a monomaleimide undecagold cluster compound. Biochemistry, 33, 13719-26 (1994).
                • Hainfeld, J.F. Gold, electron microscopy, and cancer therapy. Scanning Micros., in press (1995).
                • Hainfeld, J.F., Sprinzl, M., Mandiyan, V., Tumminia, S.J. and Boublik, M. Localization of a specific nucleotide in yeast tRNA by scanning transmission electron microscopy using an undecagold cluster. J. Struct. Biol., 107, 1-5, (1991) (Cover picture).
                • Hainfeld, J.F., Foley, C.F., Srivastava, S.C., Mausner, L.F. Feng, N.I., Meinken, G.E., and Steplewski, Z. Radioactive gold cluster immunoconjugates: Potential agents for cancer therapy. Nucl. Med. Biol., 17, 287-294 (1990).
                • Hainfeld, J.F. Undecagold-antibody method. In Colloidal Gold: Principles Methods, and Applications., M.A. Hayat (Ed.), San Diego, Academic Press; Vol. 2, pp. 413-429 (1989).
                • Hainfeld, J.F. Gold cluster-labelled antibodies. Nature, 333, 281-282 (1988).
                • Hainfeld, J.F. A small gold-conjugated antibody label: Improved resolution for electron microscopy. Science, 236, 450 (1987).
                • Kessler, P., Kotzyba-Hilbert, F., Leonetti, M., Bouet, F., Ringler, P., Brisson, A., Mendez, A., Goeldner, M. P.and Hirth, C. Synthesis of an acetylcoline receptor-specific toxin derivative regioselectively labeled with an undecagold cluster. Bioconj. Chem., 5, 199-204 (1994).
                • Lipka, J.J., Hainfeld, J.F., and Wall, J.S. Undecagold labeling of a glycoprotein: STEM visualization of an undecagoldphosphine cluster labeling the carbohydrate sites of human haptoglobin-hemoglobin complex. J. Ultrastruct. Res., 84, 120 (1983).
                • Milligan, R.A., Whittaker, M., and Safer, D. Molecular structure of F-actin and location of surface s. Nature,348, 217-221 (1990).
                • Reardon, J. E., and Frey, P. A.: Synthesis of undecagold cluster molecules as biochemical labeling reagents. 1. Monoacyl and mono [N-(succinimidoxy) succinyl clusters; Biochemistry, 23, 3849-3856 (1984).
                • Safer, D., Bolinger, L., and Leigh, J.S. Undecagold clusters for site-specific labeling of biological macromolecules: Simplified preparation and model applications. J. Inorg. Biochem., 26, 77 (1986).
                • Safer, D., Hainfeld, J. F., Wall, J. S., and Reardon J. E. Biospecific labeling with undecagold: visualization of the biotin- on Avidin. ,Science 218, 290 (1982).
                • Sagi, I., Weinrich, V., Levin, I., Glotz, C., Laschever, M., Melamud, M., Franceschi, F., Weinstein, S., and Yonath, A.: Crystallography of ribosomes: attempts at decorating the ribosomal surface; Biophys. Chem., 55, 31-42 (1995).
                • Schnyder, T., Tittmann, P., Winkler, H., Gross, H., and Wallimann, T.: Localization of reactive cysteine residues by maleidoyl undecagold in the mitochondrial creatine kinase octamer; J. Struct. Biol., 14, 209-217 (1995).
                • Servent, D., Menez, A., and Kessler, P. Site-directed disulfide reduction using an affinity reagent: application on the nicotinic acetylchloine receptor. FEBS Lett., 360, 261-5 (1995).
                • Skripkin, E., Yusupova, G., Yusupov, M., Kessler, P. Kessler, P., Ehresmann, C., and Ehresmann, B. Syntheses and ribosome binding properties of model mRNAs modified with undecagold cluster. Bioconj. Chem., 4, 549-553 (1993).
                • Thygesen, J., Weinstein, S., Franceshi, F., and Yonath, A.: The suitability of multi-metal clusters for phasing in crystallography of large macromolecular assemblies [review]; Structure, 4, 513-518 (1996).
                • Valdivia, E., Gabel, C., Reardon, J.E., CaJacob, C.A., Yang, H., Wehbi, R.S., Scott, G.L., Frey, P.A., and Fahien, L.A., Functional and morphological studies of mitochondria exposed to undecagold clusters: biologic surfaces labeling with gold clusters. Scanning Microsc., 6, 799-814 (1992).
                • Wall, J.S., Hainfeld, J.F., Bartlett, P.A., and Singer, S.J. Observation of an undecagold cluster compound in the scanning transmission electron microscope. Ultramicroscopy, 8, 397 (1982).
                • Watts, N. R. M.; Hainfeld, J. F., and Coombs, D. H.: Localization of the proteins gp7, gp8 and gp10 in the bacteriophage T4 baseplate with colloidal gold: F(ab’)2 and undecagold: Fab’ conjugates. J. Mol. Biol., 216, 315-325 (1990).
                • Weinstein S., Jahn, W., Hansen, H., Wittmann, H.G., and Yonath, A. J. Novel procedures for derivatization of ribosomes for crystallographic studies. Biol. Chem., 264, 19138-19142 (1989).
                • Wilkinson, D.A., Marion, T.N., Tillman, D.M., Norcum, M.T., Hainfeld, J.F., Seyer, J. M., and Carlson, G.M. An epitope proximal to the carobxyl terminus of the a - subunit is located near the tips of the phosphorylase kinase hexadecamer. J. Mol. Biol., 235, 974-982 (1994).
                • Yang, Y.S., Datta, A., Hainfeld, J.F., Furuya, F.R., Wall, J.S. and Frey, P.A. Mapping the lipoyl groups of the pyruvate dehydrogenase complex by use of gold cluster-labels and scanning transmission electron microscopy. Biochemistry, 33, 9428-37 (1994).
                • Zlotnick, A., Cheng, N., Stahl, S. J., Conway, J. F., Steven, A. C., and Wingfield, P. T.: Localization of the C terminus of the assembly domain of hepatitis B virus capsid protein: Implicatins for morphogenesis and organization of encapsidated RNA; Proc. Natl. Acad. Sci. USA, 94, 9556-9561 (1997).
                • 金增强/银增强试剂

                品名

                产品描述

                货号

                规格

                GoldEnhance LM/Blot (GELM)

                金增强试剂,用于光镜样品,4种溶液,使用前混合

                2112

                Initiator/Moderator/Activator/Buffer
                各15 ml(共60 ml,足够做600张载玻片)

                GoldEnhance EM(GEEM)

                金增强试剂,用于电镜样品,4种溶液,使用前混合

                2113

                Initiator/Moderator/Activator/Buffer
                各2 ml(共8 ml,足够做200个网格)

                HQ Silver

                用于纳米金的质量*佳的银增强试剂,均匀显影,极好的保持结构,特别适合电镜,光敏感

                2012

                Initiator/Moderator/Activator
                各15 ml(共45 ml)

                Li Silver

                纳米金的银增强,用于电镜、光镜、凝胶、杂交,光不敏感

                2013

                Initiator/Enhancer
                125 ml (共250 ml)

                References: 
                GoldEnhance

                • Ackerley, C. A.; Tilups, A.; Bear, C. E., and becker, L. E.: Correlative LM/TEM studies are essential in evaluating the effectiveness of liposome mediated delivery of the cystic fibrosis transmembrane regulator (CFTR) as a corrective therapy in a CFTR knockout mouse that develops lung disease; Proc. 57th Ann. Mtg., Micros. Soc. Amer.; G. W. Bailey, W. G. Jerome, S. McKernan, J. F. Mansfield, and R. L. Price (Eds.); Springer-Verlag, New York, NY; 1999, 484-485.
                • Cheung, A. L.; Graf, A. H.; Hauser-Kronberger, C.; Dietze, O.; Tubbs, R. R., and Hacker, G. W.: Detection of human papillomavirus in cervical carcinoma: comparison or peroxidase, Nanogold, and catalyzed reporter deposition (CARD)-Nanogold in situ hybridization Mod. Pathol., 12, 689 (1999).
                • Graf, A. H.; Cheung, A. L.; Hauser-Kornberger, C.; Dandachi, N.; Tubbs, R. R.; Dietze, O., and Hacker, G. W.: Clinical relevance of HPV 16/18 testing methods in cervical squamous cell carcinoma. Appl. Immunohistochem. Molecul. Morphol., 8, 300-9 (2000).
                • Grondin, G., and Beaudoin, A. R.: A New Pre-Embedding Immunogold Method that Permits to Obtain a Very High Signal with a Very Good Ultrastructure. Microsc. Microanal., 7, (Suppl. 2: Proceedings) (Proceedings of the Fifty-Ninth Annual Meeting, Microscopy Society of America); Bailey, G. W.; Price, R. L.; Voelkl, E., and Musselman, I. H., Eds.; Springer-Verlag, New York, NY, 2001, pp. 1044-1045.
                • Hainfeld, J. F.; Powell, R. D.; Stein, J. K.; Hacker, G. W.; Hauser-Kronberger, C.; Cheung, A. L. M., and Schofer, C.: Gold-based autometallography; Proc. 57th Ann. Mtg., Micros. Soc. Amer.; G. W. Bailey, W. G. Jerome, S. McKernan, J. F. Mansfield, and R. L. Price (Eds.); Springer-Verlag, New York, NY; 1999, 486-487.
                • Owen, G. R.; Meredith, D. O.; Ap Gwynn, I., and Richards, R., G.: Enhancement of immunogold-labelled focal adhesion sites in fibroblasts cultured on metal substrates: problems and solutions. Cell Biol. Int., 25, 1251-1259 (2001)
                • Powell, R. D.; Joshi, V. N.; Halsey, C. M. R.; Hainfeld, J. F.; Hacker, G. W.; Hauser-Kronberger, C.; Muss, W. H., and Takvorian, P. M.: Combined Cy3 / Nanogold conjugates for immunocytochemistry and in situ hybridization; Proc. 57th Ann. Mtg., Micros. Soc. Amer.; G. W. Bailey, W. G. Jerome, S. McKernan, J. F. Mansfield, and R. L. Price (Eds.); Springer-Verlag, New York, NY; 1999, 478-479.
                • Scheibel, T.; Kowal, A. S.; Bloom, J. D., and Lindquist, S.L.: Bidirectional amyloid fiber growth for a yeast prion determinant. Current Biology, 11, 366-369 (2001).
                •  Tubbs, R.; Pettay, J.; Skacel, M.; Powell, R.; Stoler, M.; Roche, P., and Hainfeld, J.: Gold-Facilitated in Situ Hybridization: A Bright-Field Autometallographic Alternative to Fluorescence in Situ Hybridization for Detection of HER-2/neu Gene Amplification. Am. J. Pathol.,160, 1589-1595 (2002).
                • Weipoltshammer, K.; Schéfer, C.; Almeder, M., and Wachtler, F.: Signal enhancement at the electron microscopic level using Nanogold and gold-based autometallography. Histochem. Cell Biol., 114, 489-495 (2000).

                HQ and LI Silver

                • Bergles, D. E.; Roberts, J. D. B.; Somogyi, P., and Jahr, C. E.: Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature, 405, 187-190 (2000).
                • Feng, D.; Nagy, J. A.; Brekken, R. A.; Pettersson, A.; Manseau, E. J.; Pyne, L.; Mulligan, R.; Thorpe, P. E.; Dvorak, H. F., and Dvorak, A. M.: Ultrastructural localization of the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) receptor-2 (FLK-1, KDR) in normal mouse kidney and in the hyperpermeable vessels induced by VPF/VEGF-expressing tumors and adenoviral vectors J. Histochem. Cytochem., 48, 545-555 (2000).
                • Yoshimori, T.; Yamagata, F.; Yamamoto, A.; Mizushima, N.; Kabeya, Y.; Nara, A.; Miwako, I.; Ohashi, M.; Ohsumi, M., and Ohsumi, Y.: The Mouse SKD1,a homologue of yeast Vps4p, is required for normal endosomal trafficking and morphology in mammalian cells Mol. Biol. Cell, 11, 747-763 (2000).

                HQ Silver

                • Baude, A.; Nusser, Z.; Molnar, E.; McIlhinney, R. A. J., and Somogyi, P.: High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience, 69, 1031-1055 (1997).
                • Baude, A.; Nusser, Z.; Molnar, E.; McIlhinney, R. A. J., and Somogyi, P.: High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience, 69, 1031-1055 (1995).
                • Baude, A., Nusser, A., Roberts, J.D.B., Mulvihill, E., McIlhinney, R.A.J., and Somogyi, P. The metabotropic glutamate receptor (mGluR1 a) is concentrated at perisynaptic membranes of neuronal subpopulations as detected by immunogold reaction. Neuron, 11, 771-787 (1993).
                • Bernard, V.; Levey, A. I., and Bloch, B.: Regulation of the subcellular distribution of m4 muscarinic acetylcholine receptors in striatal neurons in vivo by the cholinergic environment: evidence for regulation of cell surface receptors by endogenous and exogenous stimulation J. Neurosci., 19, 10237-10249 (1999).
                • Bernard, V.; Somogyi, P., and Bolam, J. P.: Cellular, subcellular and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J. Neuroscience, 17, 819-833 (1997).
                • Du, J.; Tao-Cheng, J.-H.; Zerfas, P., and McBain, C. J. The K+ channel, Kv2.1, is apposed to astrocytic processes and is associated with inhibitory postsynaptic membranes in hippocampal and cortical principal neurons and inhibitory interneurons. Neuroscience, 84, 37-48 (1998).
                • Gardiol, A., Racca, C., and Triller, A.: Dendritic and Postsynaptic Protein Synthetic Machinery. J. Neuroscience, 19, 168-179 (1999).
                • Hainfeld, J. F., and Furuya, F. R.: Silver-enhancement of Nanogold and undecagold: in Immunogold-Silver Staining: Principles, Methods and Applications," M. A. Hayat (Ed.); CRC Press, Boca Raton, FL, 1995, pp. 71-96.
                • Halasy, K.; Buhl, E. H.; L?rinczi, Z.; Tamás, G., and Somogyi, P: Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus. Hippocampus, 6, 306-329 (1996).
                • Hanson, J. E., and Smith, Y.: Group I metabotropic glutamate receptors at GABAergic synapses in monkeys; J. Neurosci., 19, 6488-6496 (1999).
                • Huang, S.; Deerinck, T. J.; Ellisman, M. H., and Spector, D. L.: In vivo analysis of the stability and transport of nuclear poly(A)+ RNA; J. Cell. Biol., 126, 877-899 (1994).
                • Humbel, B. M.; Sibon, O. C. M.; Stierhof, Y.-D., and Schwarz, H.: Ultra-small gold particles and silver enhancement as a detection system in immunolabeling and In Situ hybridization experiments; J. Histochem. Cytochem., 43, 735-737 (1995).
                • Lin, M., Sistina, Y., and Rodger, J. C.: Electron-microscopic localisation of thiol and disulphide groups by direct moomaleimido-nanogold labeling in the spermatozoa of a marsupial, the tammar wallaby (Macropus eugenii); Cell Tisue Res., 282, 291-296 (1995).
                • Lujan, R.; Nusser, Z.; Roberts, J. D. B.; Shigemoto R.; Ohishi, H., and Somogyi, P.: Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1-alpha, mGluR1 and mGluR5, relative to neurotransmitter release sites. J. Chem. Neuroanat., 13, 219-241 (1997).
                • Lujan, R.; Nusser, Z.; Roberts, J. D. B.; Shigemoto R., and Somogyi, P.: Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neuroscience, 8, 1488-1500 (1996).
                • Matsubara, A., Laake, J. H., Davanger, S., Usami, S.-I., and Otterson, O. P.; Organization of AMPA receptor subunits at a glustamate synapse: A quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J. Neuroscience, 16, 4457-4467 (1996).
                • Nixon, G. F., Mignery, G. A., and Somlyo, A. V.: Immunogold localization of inositol 1,4,5-trisphosphate receptors and characterization of ultrastructural features of the sarcoplasmic reticulum in phasic and tonic smooth muscle; J. Muscle Res. Cell Mot., 15, 682-700 (1994).
                • Nusser, Z.; Cull-Candy, S., and Farrant, M.; Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude;Neuron, 19, 697-709 (1997).
                • Nusser, Z., Sieghart, W., and Somogyi, P.: Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neuroscience, 18, 1693-1703 (1998).
                • Nusser, Z.; Sieghart, W.; Benke, D.; Fritschy, J.-M., and Somogyi, P.: Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA, 93, 11939-11944 (1996).
                • Nusser, Z.; Sieghart, W.; Stephenson, F. A., and Somogyi, P.: The alpha-6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells. J. Neuroscience, 16, 103-114 (1996).
                • Nusser, Z., and Somogyi, P.: Compartmentalised distribution of GABAA and glutamate receptors in relation to transmitter release sites on the surface of cerebellar neurones. Prog. Brain Research, (C. I. De Zeeuw, P. Strata and J. Voogd, Eds.), Elsevier, Oxford, UK.; 114, 1488-1500 (1997).
                • Nusser, Z.; Roberts, J. D. B.; Baude, A.; Richards, J. G., and Somogyi, P. Relative densities of synaptic and extrasynaptic GABA-A receptors on cerebellar granule cells as determined by a quantitative immunogold method. J. Neuroscience; 15, 2948-2960 (1995).
                • Nusser, Z.; Mulvihill, E.; Streit, P., and Somogyi, P.: Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience, 61, 421-427 (1994).
                • Nusser, Z.; Roberts, J. D. B.; Baude, A.; Richards, J. G.; Sieghart, W., and Somogyi. P. Immunocytochemical localization of the alpha-1 and beta-2/3 subunits of the GABA-A receptor in relation to specific GABAergic synapses in the dentate gyrus. Eur. J. Neurosci., 7, 630-646 (1995).
                • Powell, R. D.; Halsey, Carol M. R.; Spector, D. L.; Kaurin, S. L.; McCann, J.;, and Hainfeld, J. F. A covalent fluorescent-gold immunoprobe: "simultaneous" detection of a pre-mRNA splicing factor by light and electron microscopy. J. Histochem. Cytochem., 45, 947-956 (1997).
                • Punnonen, E.-L., Fages, C., Wartiovaara, J., and Rauvala, H.: Ultrststructural Localization of beta-Actin and Amphoterin mRNA in Cultured Cells: Application of tyramide signal amplification and comparison of detection methods; J. Histochem. Cytochem., 47, 99 (1999).
                • Shigemoto, R., Kulik, A., Roberts, J. D. B., Ohishi, H., Nusser, Z., Kaneko, T., and Somogyi, P.; Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature, 381, 523-525 (1996).
                • Soussan, L.; Burakov, M.; Daniels, M. P.; Toister-Achituv, M.; Porat, A.; Yarden, Y., and Elazar, Z.: ERG30, a VAP-33-related protein, functions in protein transport mediated by COPI vesicles. J. Cell Biol., 146, 301-311 (1999).
                • Suzuki, Y.; Itakura, M.; Kashiwagi, M.; Nakamura, N.; Matsuki, T.; Sakuta, H.; Naito, N.; Takano, K.; Fujita, T., and Hirose, S.: Identification by differential display of a hypertonicity-inducible inward rectifier potassium channel highly expressed in chloride cells. J. Biol. Chem,274, 11376-11382 (1999).
                • Thompson, W. F., Beven, A. F., Wells, B., and Shaw, P. J. Sites of rDNA transcription genes are widely dispersed through the nucleolus in Pisum sativum and can comprise single genes. Plant J., 12, 571-581 (1997).
                • Yanase, K.; Smith, R. M.; Cizman, B.; Foster, M. H.; Peachey, L. D.; Jarrett, L., and Madaio, M. P.: A subgroup of Murine monoclonal anti-deoxyribonucleic acid antibodies traverse the cytoplasm and enter the nucleus in a time- and temperature- dependent manner;Laboratory Investigation, 71, 52-60 (1994).

                LI Silver

                • Hainfeld, J. F., and Furuya, F. R.: Silver-enhancement of Nanogold and undecagold: in Immunogold-Silver Staining: Principles, Methods and Applications," M. A. Hayat (Ed.); CRC Press, Boca Raton, FL, 1995, pp. 71-96.
                • Rayner, S. L., and Stephenson, F. A. Labelling and characterization of gamma-amminobutyric acidA receptor subunit-specific antibodies with monomaleimido-Nanogold. Biochem. Soc. Trans., 25, 546S (1997).

                • 负染试剂
                NanoVan(钒)可用于标准负染,建议用于纳米金标记的样品,使1.4 nm极小的纳米金清晰可见,而高原子数的染料使其模糊。
                Nano-W(有机钨)扩展性**,密度高,对比度高,可与NanoVan混合得到中等密度负染试剂。

                品名

                产品描述

                货号

                规格

                NanoVan® (Methylamine Vanadate)

                2%钒负染染料

                2011

                5 ml

                Nano-W® (Methylamine Tungstate)

                2%基于有机钨复合物的负染染料

                2018

                5 ml

                References: 
                NanoVan Negative Stain

                •  Franzetti, B.; Schoehn, G.; Hernandez, J. F.; Jaquinod, M.; Ruigrok, R. W.; and Zaccai, G.: Tetrahedral aminopeptidase: a novel large protease complex from archaea. EMBO J., 21, 2132-2138 (2002).
                • Gregori, L., Hainfeld, J. F., Simon, M. N., and Goldgaber, D. Binding of amyloid beta protein to the 20S proteasome. J. Biol. Chem., 272, 58-62 (1997).
                • Hainfeld, J.F., Safer, D., Wall, J.S., Simon, M., Lin, B., and Powell, R. D. Methylamine vanadate (NanoVan) negative stain. In Proc. 52nd Ann. Mtg. Micros. Soc. Amer.; Bailey, G.W. and Garratt-Reed, A.J. (Eds.), San Francisco Press, San Francisco. 132-133, (1994).
                • Tracz, E., Dickson, D. W., Hainfeld, J. F., and Ksiezak-Reding, H. Paired helical filaments in corticobasal degeneration: the fine fibrillary structure with NanoVan. Brain Res., 773, 33-44 (1997).
                • Tracz, E., Dickson, D.W., Hainfeld, J.F., and Ksiezak-Reding, H. The ultrastructure of paired helical filaments with NanoVan, a novel negative stain reagent. Proc. XIIIth Int. Cong. for Elec. Micros., Paris (1994) pp. 675-676.
                • Zagursky, R. J.; Ooi, P.; Jones, K. F.; Fiske, M. J.; Smith, R. P., and Green, B. A. Identification of a Haemophilus influenzae 5’-nucleotidase protein: cloning of the nucA gene and immunogenicity and characterization of the NucA protein. Infect. Immun., 68, 2525-34 (2000).

                Nano-W Negative Stain

                • Shayakhmetov, D. M.; Papayannopoulou, T.; Stamatoyannopoulos, G., and Lieber, A.: Efficient gene transfer intohuman CD34+ cells by a retargeted adenovirus vector J. Virol., 74, 2567-2583 (2000).
                • Oliver, R. M.: Negative Stain Electron Microscopy of Protein Macromolecules. Meth. Enzym., 27, 616-672 (1973).

            www.nanoprobes.com



标题:
内容:
联系人:
联系电话:
Email:
公司名称:
联系地址:
 
 
注:1.可以使用快捷键Alt+S或Ctrl+Enter发送信息!
2.如有必要,请您留下您的详细联系方式!
相关产品
相关文章

沪公网安备 31011202007337号